ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric Mean Metallicity Distribution of the Milky Ways Disk

234   0   0.0 ( 0 )
 نشر من قبل Deokkeun An
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Deokkeun An




اسأل ChatGPT حول البحث

I present the mean metallicity distribution of stars in the Milky Way Galaxy based on photometry from the Sloan Digital Sky Survey. I utilize an empirically calibrated set of stellar isochrones developed in previous work to estimate the metallicities of individual stars to a precision of $0.2$ dex for reasonably bright stars across the survey area. I also obtain more precise metallicity estimates using priors from the $Gaia$ parallaxes for relatively nearby stars. Close to the Galactic mid-plane ($|Z|<2$ kpc), a mean metallicity map reveals deviations from the mirror symmetry between the northern and southern hemispheres, displaying wave-like oscillations. The observed metallicity asymmetry structure is almost parallel to the Galactic mid-plane, and coincides with the previously known asymmetry in the stellar number density distribution. This result reinforces the previous notion of the plane-parallel vertical waves propagating through the disk, in which a local metallicity perturbation from the mean vertical metallicity gradient is induced by the phase-space wrapping of stars in the $Z$-$V_Z$ plane. The maximum amplitude of the metallicity asymmetry ($Delta$[Fe/H]$sim0.05$) implies that these stars have been pulled away from the Galactic mid-plane by an order of $Delta|Z|sim80$ pc as a massive halo substructure such as the Sagittarius dwarf galaxy plunged through the Milky Way. This work provides evidence that the $Gaia$ phase-space spiral may continue out to $|Z|sim1.5$ kpc.



قيم البحث

اقرأ أيضاً

We present an analysis of the radial age gradients for the stellar halos of five Milky Way mass-sized systems simulated as part of the Aquarius Project. The halos show a diversity of age trends, reflecting their different assembly histories. Four of the simulated halos possess clear negative age gradients, ranging from approximately -7 to -19 Myr/kpc , shallower than those determined by recent observational studies of the Milky Ways stellar halo. However, when restricting the analysis to the accreted component alone, all of the stellar halos exhibit a steeper negative age gradient with values ranging from $-$8 to $-$32~Myr/kpc, closer to those observed in the Galaxy. Two of the accretion-dominated simulated halos show a large concentration of old stars in the center, in agreement with the Ancient Chronographic Sphere reported observationally. The stellar halo that best reproduces the current observed characteristics of the age distributions of the Galaxy is that formed principally by the accretion of small satellite galaxies. Our findings suggest that the hierarchical clustering scenario can reproduce the MWs halo age distribution if the stellar halo was assembled from accretion and disruption of satellite galaxies with dynamical masses less than ~10^9.5M_sun, and a minimal in situ contribution.
Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Ways disk, and examined how this gradient varies for different [a/F e] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the surveys consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.
We analyse the chemical properties of a set of solar vicinity stars, and show that the small dispersion in abundances of alpha-elements at all ages provides evidence that the SFH has been uniform throughout the thick disk. In the context of long time scale infall models, we suggest that this result points either to a limited dependence of the gas accretion on the Galactic radius in the inner disk (R<10 kpc), or to a decoupling of the accretion history and star formation history due to other processes governing the ISM in the early disk, suggesting that infall cannot be a determining parameter of the chemical evolution at these epochs. We argue however that these results and other recent observational constraints -- namely the lack of radial metallicity gradient and the non-evolving scale length of the thick disk -- are better explained if the early disk is viewed as a pre-assembled gaseous system, with most of the gas settled before significant star formation took place -- formally the equivalent of a closed-box model. In any case, these results point to a weak, or non-existent inside-out formation history in the thick disk, or in the first 3-5 Gyr of the formation of the Galaxy. We argue however that the growing importance of an external disk whose chemical properties are distinct from those of the inner disk would give the impression of an inside-out growth process when seen through snapshots at different epochs. However, the progressive, continuous process usually invoked may not have actually existed in the Milky Way.
We present stellar metallicity measurements of more than 600 late-type stars in the central 10 pc of the Galactic centre. Together with our previously published KMOS data, this data set allows us to investigate, for the first time, spatial variations of the nuclear star clusters metallicity distribution. Using the integral-field spectrograph KMOS (VLT) we observed almost half of the area enclosed by the nuclear star clusters effective radius. We extract spectra at medium spectral resolution, and apply full spectral fitting utilising the PHOENIX library of synthetic stellar spectra. The stellar metallicities range from [M/H]=-1.25 dex to [M/H]> +0.3 dex, with most of the stars having super-solar metallicity. We are able to measure an anisotropy of the stellar metallicity distribution. In the Galactic North, the portion of sub-solar metallicity stars with [M/H]<0.0 dex is more than twice as high as in the Galactic South. One possible explanation for different fractions of sub-solar metallicity stars in different parts of the cluster is a recent merger event. We propose to test this hypothesis with high-resolution spectroscopy, and by combining the metallicity information with kinematic data.
We report photometric estimates of effective temperature, $T_{rm eff}$, metallicity, [Fe/H], carbonicity, [C/Fe], and absolute carbon abundances, $A{rm (C)}$, for over 700,000 stars from the Southern Photometric Local Universe Survey (S-PLUS) Data Re lease 2, covering a substantial fraction of the equatorial Sloan Digital Sky Survey Stripe 82. We present an analysis for two stellar populations: 1) halo main-sequence turnoff stars and 2) K-dwarf stars of mass $0.58 < M/M_{odot} <0.75$ in the Solar Neighborhood. Application of the Stellar Photometric Index Network Explorer (SPHINX) to the mixed-bandwidth (narrow- plus wide-band) filter photometry from S-PLUS produces robust estimates of the metallicities and carbon abundances in stellar atmospheres over a wide range of temperature, $4250 < T_{rm eff} textrm{(K)} < 7000$. The use of multiple narrow-band S-PLUS filters enables SPHINX to achieve substantially lower levels of catastrophic failures (large offsets in metallicity estimates relative to spectroscopic determinations) than previous efforts using a single metallicity-sensitive narrow-band filter. We constrain the exponential slope of the Milky Ways K-dwarf halo metallicity distribution function (MDF), $lambda_{10, textrm{[Fe/H]}} = 0.85 pm 0.21$, over the metallicity range $-2.5 < textrm{[Fe/H]} < -1.0$; the MDF of our local-volume K-dwarf sample is well-represented by a gamma distribution with parameters $alpha=2.8$ and $beta=4.2$. S-PLUS photometry obtains absolute carbon abundances with a precision of $sim 0.35$dex for stars with $T_{rm eff} < 6500$K. We identify 364 candidate carbon-enhanced metal-poor stars, obtain assignments of these stars into the Yoon-Beers morphological groups in the $A$(C)-[Fe/H] space, and derive the CEMP frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا