ﻻ يوجد ملخص باللغة العربية
We present stellar metallicity measurements of more than 600 late-type stars in the central 10 pc of the Galactic centre. Together with our previously published KMOS data, this data set allows us to investigate, for the first time, spatial variations of the nuclear star clusters metallicity distribution. Using the integral-field spectrograph KMOS (VLT) we observed almost half of the area enclosed by the nuclear star clusters effective radius. We extract spectra at medium spectral resolution, and apply full spectral fitting utilising the PHOENIX library of synthetic stellar spectra. The stellar metallicities range from [M/H]=-1.25 dex to [M/H]> +0.3 dex, with most of the stars having super-solar metallicity. We are able to measure an anisotropy of the stellar metallicity distribution. In the Galactic North, the portion of sub-solar metallicity stars with [M/H]<0.0 dex is more than twice as high as in the Galactic South. One possible explanation for different fractions of sub-solar metallicity stars in different parts of the cluster is a recent merger event. We propose to test this hypothesis with high-resolution spectroscopy, and by combining the metallicity information with kinematic data.
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact
We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarzschilds orbit superposition technique. We fit the stellar kinematic maps presented in Feldmeier et al. (2014). The models are used to constrain the supermassiv
I present the mean metallicity distribution of stars in the Milky Way Galaxy based on photometry from the Sloan Digital Sky Survey. I utilize an empirically calibrated set of stellar isochrones developed in previous work to estimate the metallicities
Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-
Aims. Young, massive stars have been found at projected distances R < 0.5 pc from supermassive black hole, Sgr A* at the center of our Galay. In recent years, increasing evidence has been found for the presence of young, massive stars also at R > 0.5