ترغب بنشر مسار تعليمي؟ اضغط هنا

ArcticNet: A Deep Learning Solution to Classify Arctic Wetlands

56   0   0.0 ( 0 )
 نشر من قبل Ziyu Jiang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Arctic environments are rapidly changing under the warming climate. Of particular interest are wetlands, a type of ecosystem that constitutes the most effective terrestrial long-term carbon store. As permafrost thaws, the carbon that was locked in these wetland soils for millennia becomes available for aerobic and anaerobic decomposition, which releases CO2 and CH4, respectively, back to the atmosphere.As CO2 and CH4 are potent greenhouse gases, this transfer of carbon from the land to the atmosphere further contributes to global warming, thereby increasing the rate of permafrost degradation in a positive feedback loop. Therefore, monitoring Arctic wetland health and dynamics is a key scientific task that is also of importance for policy. However, the identification and delineation of these important wetland ecosystems, remain incomplete and often inaccurate. Mapping the extent of Arctic wetlands remains a challenge for the scientific community. Conventional, coarser remote sensing methods are inadequate at distinguishing the diverse and micro-topographically complex non-vascular vegetation that characterize Arctic wetlands, presenting the need for better identification methods. To tackle this challenging problem, we constructed and annotated the first-of-its-kind Arctic Wetland Dataset (AWD). Based on that, we present ArcticNet, a deep neural network that exploits the multi-spectral, high-resolution imagery captured from nanosatellites (Planet Dove CubeSats) with additional DEM from the ArcticDEM project, to semantically label a Arctic study area into six types, in which three Arctic wetland functional types are included. We present multi-fold efforts to handle the arising challenges, including class imbalance, and the choice of fusion strategies. Preliminary results endorse the high promise of ArcticNet, achieving 93.12% in labelling a hold-out set of regions in our Arctic study area.



قيم البحث

اقرأ أيضاً

Object proposals have become an integral preprocessing steps of many vision pipelines including object detection, weakly supervised detection, object discovery, tracking, etc. Compared to the learning-free methods, learning-based proposals have becom e popular recently due to the growing interest in object detection. The common paradigm is to learn object proposals from data labeled with a set of object regions and their corresponding categories. However, this approach often struggles with novel objects in the open world that are absent in the training set. In this paper, we identify that the problem is that the binary classifiers in existing proposal methods tend to overfit to the training categories. Therefore, we propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlap with any ground-truth object (e.g., centerness and IoU). This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization on COCO, as well as cross-dataset evaluation on RoboNet, Object365, and EpicKitchens. Finally, we demonstrate the merit of OLN for long-tail object detection on large vocabulary dataset, LVIS, where we notice clear improvement in rare and common categories.
Our previous work classified a taxonomy of suturing gestures during a vesicourethral anastomosis of robotic radical prostatectomy in association with tissue tears and patient outcomes. Herein, we train deep-learning based computer vision (CV) to auto mate the identification and classification of suturing gestures for needle driving attempts. Using two independent raters, we manually annotated live suturing video clips to label timepoints and gestures. Identification (2395 videos) and classification (511 videos) datasets were compiled to train CV models to produce two- and five-class label predictions, respectively. Networks were trained on inputs of raw RGB pixels as well as optical flow for each frame. Each model was trained on 80/20 train/test splits. In this study, all models were able to reliably predict either the presence of a gesture (identification, AUC: 0.88) as well as the type of gesture (classification, AUC: 0.87) at significantly above chance levels. For both gesture identification and classification datasets, we observed no effect of recurrent classification model choice (LSTM vs. convLSTM) on performance. Our results demonstrate CVs ability to recognize features that not only can identify the action of suturing but also distinguish between different classifications of suturing gestures. This demonstrates the potential to utilize deep learning CV towards future automation of surgical skill assessment.
Rapid globalization and the interdependence of humanity that engender tremendous in-flow of human migration towards the urban spaces. With advent of high definition satellite images, high resolution data, computational methods such as deep neural net work, capable hardware; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. In this paper we propose a novel classification method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. The state-of-the-art is mostly dominated by classification of building structures, building types etc. and largely represents the developed world which are insufficient for developing countries such as Bangladesh where the surrounding is crucial for the classification. Moreover, the traditional methods propose small-scale classifications, which give limited information with poor scalability and are slow to compute. We categorize the urban area in terms of informal and formal spaces taking the surroundings into account. 50 km x 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert. The classification is based broadly on two dimensions: urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four classes: 1) highly informal; 2) moderately informal; 3) moderately formal; and 4) highly formal areas. In total 16 sub-classes were identified. For semantic segmentation, Googles DeeplabV3+ model was used which increases the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used for training and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean IoU.
Endoscopy is a widely used imaging modality to diagnose and treat diseases in hollow organs as for example the gastrointestinal tract, the kidney and the liver. However, due to varied modalities and use of different imaging protocols at various clini cal centers impose significant challenges when generalising deep learning models. Moreover, the assembly of large datasets from different clinical centers can introduce a huge label bias that renders any learnt model unusable. Also, when using new modality or presence of images with rare patterns, a bulk amount of similar image data and their corresponding labels are required for training these models. In this work, we propose to use a few-shot learning approach that requires less training data and can be used to predict label classes of test samples from an unseen dataset. We propose a novel additive angular margin metric in the framework of prototypical network in few-shot learning setting. We compare our approach to the several established methods on a large cohort of multi-center, multi-organ, and multi-modal endoscopy data. The proposed algorithm outperforms existing state-of-the-art methods.
74 - Jiehong Lin , Xian Shi , Yuan Gao 2020
Point set is arguably the most direct approximation of an object or scene surface, yet its practical acquisition often suffers from the shortcoming of being noisy, sparse, and possibly incomplete, which restricts its use for a high-quality surface re covery. Point set upsampling aims to increase its density and regularity such that a better surface recovery could be achieved. The problem is severely ill-posed and challenging, considering that the upsampling target itself is only an approximation of the underlying surface. Motivated to improve the surface approximation via point set upsampling, we identify the factors that are critical to the objective, by pairing the surface approximation error bounds of the input and output point sets. It suggests that given a fixed budget of points in the upsampling result, more points should be distributed onto the surface regions where local curvatures are relatively high. To implement the motivation, we propose a novel design of Curvature-ADaptive Point set Upsampling network (CAD-PU), the core of which is a module of curvature-adaptive feature expansion. To train CAD-PU, we follow the same motivation and propose geometrically intuitive surrogates that approximate discrete notions of surface curvature for the upsampled point set. We further integrate the proposed surrogates into an adversarial learning based curvature minimization objective, which gives a practically effective learning of CAD-PU. We conduct thorough experiments that show the efficacy of our contributions and the advantages of our method over existing ones. Our implementation codes are publicly available at https://github.com/JiehongLin/CAD-PU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا