ترغب بنشر مسار تعليمي؟ اضغط هنا

Speaker Anonymization Using X-vector and Neural Waveform Models

88   0   0.0 ( 0 )
 نشر من قبل Fuming Fang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The social media revolution has produced a plethora of web services to which users can easily upload and share multimedia documents. Despite the popularity and convenience of such services, the sharing of such inherently personal data, including speech data, raises obvious security and privacy concerns. In particular, a users speech data may be acquired and used with speech synthesis systems to produce high-quality speech utterances which reflect the same users speaker identity. These utterances may then be used to attack speaker verification systems. One solution to mitigate these concerns involves the concealing of speaker identities before the sharing of speech data. For this purpose, we present a new approach to speaker anonymization. The idea is to extract linguistic and speaker identity features from an utterance and then to use these with neural acoustic and waveform models to synthesize anonymized speech. The original speaker identity, in the form of timbre, is suppressed and replaced with that of an anonymous pseudo identity. The approach exploits state-of-the-art x-vector speaker representations. These are used to derive anonymized pseudo speaker identities through the combination of multiple, random speaker x-vectors. Experimental results show that the proposed approach is effective in concealing speaker identities. It increases the equal error rate of a speaker verification system while maintaining high quality, anonymized speech.


قيم البحث

اقرأ أيضاً

The recently proposed x-vector based anonymization scheme converts any input voice into that of a random pseudo-speaker. In this paper, we present a flexible pseudo-speaker selection technique as a baseline for the first VoicePrivacy Challenge. We ex plore several design choices for the distance metric between speakers, the region of x-vector space where the pseudo-speaker is picked, and gender selection. To assess the strength of anonymization achieved, we consider attackers using an x-vector based speaker verification system who may use original or anonymized speech for enrollment, depending on their knowledge of the anonymization scheme. The Equal Error Rate (EER) achieved by the attackers and the decoding Word Error Rate (WER) over anonymized data are reported as the measures of privacy and utility. Experiments are performed using datasets derived from LibriSpeech to find the optimal combination of design choices in terms of privacy and utility.
Deep neural networks can learn complex and abstract representations, that are progressively obtained by combining simpler ones. A recent trend in speech and speaker recognition consists in discovering these representations starting from raw audio sam ples directly. Differently from standard hand-crafted features such as MFCCs or FBANK, the raw waveform can potentially help neural networks discover better and more customized representations. The high-dimensional raw inputs, however, can make training significantly more challenging. This paper summarizes our recent efforts to develop a neural architecture that efficiently processes speech from audio waveforms. In particular, we propose SincNet, a novel Convolutional Neural Network (CNN) that encourages the first layer to discover meaningful filters by exploiting parametrized sinc functions. In contrast to standard CNNs, which learn all the elements of each filter, only low and high cutoff frequencies of band-pass filters are directly learned from data. This inductive bias offers a very compact way to derive a customized front-end, that only depends on some parameters with a clear physical meaning. Our experiments, conducted on both speaker and speech recognition, show that the proposed architecture converges faster, performs better, and is more computationally efficient than standard CNNs.
105 - Zhong Meng , Hu Hu , Jinyu Li 2020
We propose a novel neural label embedding (NLE) scheme for the domain adaptation of a deep neural network (DNN) acoustic model with unpaired data samples from source and target domains. With NLE method, we distill the knowledge from a powerful source -domain DNN into a dictionary of label embeddings, or l-vectors, one for each senone class. Each l-vector is a representation of the senone-specific output distributions of the source-domain DNN and is learned to minimize the average L2, Kullback-Leibler (KL) or symmetric KL distance to the output vectors with the same label through simple averaging or standard back-propagation. During adaptation, the l-vectors serve as the soft targets to train the target-domain model with cross-entropy loss. Without parallel data constraint as in the teacher-student learning, NLE is specially suited for the situation where the paired target-domain data cannot be simulated from the source-domain data. We adapt a 6400 hours multi-conditional US English acoustic model to each of the 9 accented English (80 to 830 hours) and kids speech (80 hours). NLE achieves up to 14.1% relative word error rate reduction over direct re-training with one-hot labels.
In this paper we investigate the GMM-derived (GMMD) features for adaptation of deep neural network (DNN) acoustic models. The adaptation of the DNN trained on GMMD features is done through the maximum a posteriori (MAP) adaptation of the auxiliary GM M model used for GMMD feature extraction. We explore fusion of the adapted GMMD features with conventional features, such as bottleneck and MFCC features, in two different neural network architectures: DNN and time-delay neural network (TDNN). We analyze and compare different types of adaptation techniques such as i-vectors and feature-space adaptation techniques based on maximum likelihood linear regression (fMLLR) with the proposed adaptation approach, and explore their complementarity using various types of fusion such as feature level, posterior level, lattice level and others in order to discover the best possible way of combination. Experimental results on the TED-LIUM corpus show that the proposed adaptation technique can be effectively integrated into DNN and TDNN setups at different levels and provide additional gain in recognition performance: up to 6% of relative word error rate reduction (WERR) over the strong feature-space adaptation techniques based on maximum likelihood linear regression (fMLLR) speaker adapted DNN baseline, and up to 18% of relative WERR in comparison with a speaker independent (SI) DNN baseline model, trained on conventional features. For TDNN models the proposed approach achieves up to 26% of relative WERR in comparison with a SI baseline, and up 13% in comparison with the model adapted by using i-vectors. The analysis of the adapted GMMD features from various points of view demonstrates their effectiveness at different levels.
202 - Yan Deng , Lei He , Frank Soong 2018
Neural TTS has shown it can generate high quality synthesized speech. In this paper, we investigate the multi-speaker latent space to improve neural TTS for adapting the system to new speakers with only several minutes of speech or enhancing a premiu m voice by utilizing the data from other speakers for richer contextual coverage and better generalization. A multi-speaker neural TTS model is built with the embedded speaker information in both spectral and speaker latent space. The experimental results show that, with less than 5 minutes of training data from a new speaker, the new model can achieve an MOS score of 4.16 in naturalness and 4.64 in speaker similarity close to human recordings (4.74). For a well-trained premium voice, we can achieve an MOS score of 4.5 for out-of-domain texts, which is comparable to an MOS of 4.58 for professional recordings, and significantly outperforms single speaker result of 4.28.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا