ترغب بنشر مسار تعليمي؟ اضغط هنا

Design Choices for X-vector Based Speaker Anonymization

302   0   0.0 ( 0 )
 نشر من قبل Brij Mohan Lal Srivastava
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently proposed x-vector based anonymization scheme converts any input voice into that of a random pseudo-speaker. In this paper, we present a flexible pseudo-speaker selection technique as a baseline for the first VoicePrivacy Challenge. We explore several design choices for the distance metric between speakers, the region of x-vector space where the pseudo-speaker is picked, and gender selection. To assess the strength of anonymization achieved, we consider attackers using an x-vector based speaker verification system who may use original or anonymized speech for enrollment, depending on their knowledge of the anonymization scheme. The Equal Error Rate (EER) achieved by the attackers and the decoding Word Error Rate (WER) over anonymized data are reported as the measures of privacy and utility. Experiments are performed using datasets derived from LibriSpeech to find the optimal combination of design choices in terms of privacy and utility.



قيم البحث

اقرأ أيضاً

The social media revolution has produced a plethora of web services to which users can easily upload and share multimedia documents. Despite the popularity and convenience of such services, the sharing of such inherently personal data, including spee ch data, raises obvious security and privacy concerns. In particular, a users speech data may be acquired and used with speech synthesis systems to produce high-quality speech utterances which reflect the same users speaker identity. These utterances may then be used to attack speaker verification systems. One solution to mitigate these concerns involves the concealing of speaker identities before the sharing of speech data. For this purpose, we present a new approach to speaker anonymization. The idea is to extract linguistic and speaker identity features from an utterance and then to use these with neural acoustic and waveform models to synthesize anonymized speech. The original speaker identity, in the form of timbre, is suppressed and replaced with that of an anonymous pseudo identity. The approach exploits state-of-the-art x-vector speaker representations. These are used to derive anonymized pseudo speaker identities through the combination of multiple, random speaker x-vectors. Experimental results show that the proposed approach is effective in concealing speaker identities. It increases the equal error rate of a speaker verification system while maintaining high quality, anonymized speech.
In this paper, we study a novel technique that exploits the interaction between speaker traits and linguistic content to improve both speaker verification and utterance verification performance. We implement an idea of speaker-utterance dual attentio n (SUDA) in a unified neural network. The dual attention refers to an attention mechanism for the two tasks of speaker and utterance verification. The proposed SUDA features an attention mask mechanism to learn the interaction between the speaker and utterance information streams. This helps to focus only on the required information for respective task by masking the irrelevant counterparts. The studies conducted on RSR2015 corpus confirm that the proposed SUDA outperforms the framework without attention mask as well as several competitive systems for both speaker and utterance verification.
Speaker embeddings become growing popular in the text-independent speaker verification task. In this paper, we propose two improvements during the training stage. The improvements are both based on triplet cause the training stage and the evaluation stage of the baseline x-vector system focus on different aims. Firstly, we introduce triplet loss for optimizing the Euclidean distances between embeddings while minimizing the multi-class cross entropy loss. Secondly, we design an embedding similarity measurement network for controlling the similarity between the two selected embeddings. We further jointly train the two new methods with the original network and achieve state-of-the-art. The multi-task training synergies are shown with a 9% reduction equal error rate (EER) and detected cost function (DCF) on the 2016 NIST Speaker Recognition Evaluation (SRE) Test Set.
Conversations between a clinician and a patient, in natural conditions, are valuable sources of information for medical follow-up. The automatic analysis of these dialogues could help extract new language markers and speed-up the clinicians reports. Yet, it is not clear which speech processing pipeline is the most performing to detect and identify the speaker turns, especially for individuals with speech and language disorders. Here, we proposed a split of the data that allows conducting a comparative evaluation of speaker role recognition and speaker enrollment methods to solve this task. We trained end-to-end neural network architectures to adapt to each task and evaluate each approach under the same metric. Experimental results are reported on naturalistic clinical conversations between Neuropsychologist and Interviewees, at different stages of Huntingtons disease. We found that our Speaker Role Recognition model gave the best performances. In addition, our study underlined the importance of retraining models with in-domain data. Finally, we observed that results do not depend on the demographics of the Interviewee, highlighting the clinical relevance of our methods.
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا