ﻻ يوجد ملخص باللغة العربية
Recurrent neural networks (RNNs) have been extraordinarily successful for prediction with sequential data. To tackle highly variable and noisy real-world data, we introduce Particle Filter Recurrent Neural Networks (PF-RNNs), a new RNN family that explicitly models uncertainty in its internal structure: while an RNN relies on a long, deterministic latent state vector, a PF-RNN maintains a latent state distribution, approximated as a set of particles. For effective learning, we provide a fully differentiable particle filter algorithm that updates the PF-RNN latent state distribution according to the Bayes rule. Experiments demonstrate that the proposed PF-RNNs outperform the corresponding standard gated RNNs on a synthetic robot localization dataset and 10 real-world sequence prediction datasets for text classification, stock price prediction, etc.
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember.
We present a provable, sampling-based approach for generating compact Convolutional Neural Networks (CNNs) by identifying and removing redundant filters from an over-parameterized network. Our algorithm uses a small batch of input data points to assi
Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process wil
Recurrent neural networks (RNNs) such as Long Short Term Memory (LSTM) networks have become popular in a variety of applications such as image processing, data classification, speech recognition, and as controllers in autonomous systems. In practical
Origin-destination (OD) matrices are often used in urban planning, where a city is partitioned into regions and an element (i, j) in an OD matrix records the cost (e.g., travel time, fuel consumption, or travel speed) from region i to region j. In th