ﻻ يوجد ملخص باللغة العربية
The energy-momentum tensor form factors contain a wealth of information about the nucleon. It is insightful to visualize this information in terms of 3D or 2D densities related by Fourier transformations to the form factors. The densities associated with the angular momentum distribution were recently shown to receive monopole and quadrupole contributions. We show that these two contributions are uniquely related to each other. The quadrupole contribution can be viewed as induced by the monopole contribution, and contains no independent information. Both contributions however play important roles for the visualization of the angular momentum density.
This two-paper series addresses and fixes the long-standing gauge invariance problem of angular momentum in gauge theories. This QED part reveals: 1) The spin and orbital angular momenta of electrons and photons can all be consistently defined gauge
We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of el
Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action
The additivity principle of the extreme shell model stipulates that an average value of a one-body operator be equal to the sum of the core contribution and effective contributions of valence (particle or hole) nucleons. For quadrupole moment and ang
Experimental measurements of Drell-Yan (DY) vector-boson production are available from the Large Hadron Collider (LHC) and from lower-energy collider and fixed-target experiments. In the region of low vector-boson transverse momenta $q_T$, which is i