ﻻ يوجد ملخص باللغة العربية
We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.
Using a three-dimensional semiclassical model, we study double ionization for strongly-driven He fully accounting for magnetic field effects. For linearly and slightly elliptically polarized laser fields, we show that recollisions and the magnetic fi
We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational meth
Ionization of atoms and molecules by absorption of a light pulse results in electron wavepackets carrying information on the atomic or molecular structure as well as on the dynamics of the ionization process. These wavepackets can be described as a c
Double and triple ionization of allene are investigated using electron-electron, ion-ion, electron-electron-ion and electron-electron-ion-ion (ee, ii, eei, eeii) coincidence spectroscopies at selected photon energies. The results provide supporting e
We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort XUV pulses with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for puls