ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstructing faces from voices

78   0   0.0 ( 0 )
 نشر من قبل Rita Singh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Voice profiling aims at inferring various human parameters from their speech, e.g. gender, age, etc. In this paper, we address the challenge posed by a subtask of voice profiling - reconstructing someones face from their voice. The task is designed to answer the question: given an audio clip spoken by an unseen person, can we picture a face that has as many common elements, or associations as possible with the speaker, in terms of identity? To address this problem, we propose a simple but effective computational framework based on generative adversarial networks (GANs). The network learns to generate faces from voices by matching the identities of generated faces to those of the speakers, on a training set. We evaluate the performance of the network by leveraging a closely related task - cross-modal matching. The results show that our model is able to generate faces that match several biometric characteristics of the speaker, and results in matching accuracies that are much better than chance.



قيم البحث

اقرأ أيضاً

131 - Hao Liang , Lulan Yu , Guikang Xu 2021
Multiple studies in the past have shown that there is a strong correlation between human vocal characteristics and facial features. However, existing approaches generate faces simply from voice, without exploring the set of features that contribute t o these observed correlations. A computational methodology to explore this can be devised by rephrasing the question to: how much would a target face have to change in order to be perceived as the originator of a source voice? With this in perspective, we propose a framework to morph a target face in response to a given voice in a way that facial features are implicitly guided by learned voice-face correlation in this paper. Our framework includes a guided autoencoder that converts one face to another, controlled by a unique model-conditioning component called a gating controller which modifies the reconstructed face based on input voice recordings. We evaluate the framework on VoxCelab and VGGFace datasets through human subjects and face retrieval. Various experiments demonstrate the effectiveness of our proposed model.
This paper introduces the Voices Obscured In Complex Environmental Settings (VOICES) corpus, a freely available dataset under Creative Commons BY 4.0. This dataset will promote speech and signal processing research of speech recorded by far-field mic rophones in noisy room conditions. Publicly available speech corpora are mostly composed of isolated speech at close-range microphony. A typical approach to better represent realistic scenarios, is to convolve clean speech with noise and simulated room response for model training. Despite these efforts, model performance degrades when tested against uncurated speech in natural conditions. For this corpus, audio was recorded in furnished rooms with background noise played in conjunction with foreground speech selected from the LibriSpeech corpus. Multiple sessions were recorded in each room to accommodate for all foreground speech-background noise combinations. Audio was recorded using twelve microphones placed throughout the room, resulting in 120 hours of audio per microphone. This work is a multi-organizational effort led by SRI International and Lab41 with the intent to push forward state-of-the-art distant microphone approaches in signal processing and speech recognition.
This work focuses on the analysis that whether 3D face models can be learned from only the speech inputs of speakers. Previous works for cross-modal face synthesis study image generation from voices. However, image synthesis includes variations such as hairstyles, backgrounds, and facial textures, that are arguably irrelevant to voice or without direct studies to show correlations. We instead investigate the ability to reconstruct 3D faces to concentrate on only geometry, which is more physiologically grounded. We propose both the supervised learning and unsupervised learning frameworks. Especially we demonstrate how unsupervised learning is possible in the absence of a direct voice-to-3D-face dataset under limited availability of 3D face scans when the model is equipped with knowledge distillation. To evaluate the performance, we also propose several metrics to measure the geometric fitness of two 3D faces based on points, lines, and regions. We find that 3D face shapes can be reconstructed from voices. Experimental results suggest that 3D faces can be reconstructed from voices, and our method can improve the performance over the baseline. The best performance gains (15% - 20%) on ear-to-ear distance ratio metric (ER) coincides with the intuition that one can roughly envision whether a speakers face is overall wider or thinner only from a persons voice. See our project page for codes and data.
We introduce a seemingly impossible task: given only an audio clip of someone speaking, decide which of two face images is the speaker. In this paper we study this, and a number of related cross-modal tasks, aimed at answering the question: how much can we infer from the voice about the face and vice versa? We study this task in the wild, employing the datasets that are now publicly available for face recognition from static images (VGGFace) and speaker identification from audio (VoxCeleb). These provide training and testing scenarios for both static and dynamic testing of cross-modal matching. We make the following contributions: (i) we introduce CNN architectures for both binary and multi-way cross-modal face and audio matching, (ii) we compare dynamic testing (where video information is available, but the audio is not from the same video) with static testing (where only a single still image is available), and (iii) we use human testing as a baseline to calibrate the difficulty of the task. We show that a CNN can indeed be trained to solve this task in both the static and dynamic scenarios, and is even well above chance on 10-way classification of the face given the voice. The CNN matches human performance on easy examples (e.g. different gender across faces) but exceeds human performance on more challenging examples (e.g. faces with the same gender, age and nationality).
We propose a novel framework, called Disjoint Mapping Network (DIMNet), for cross-modal biometric matching, in particular of voices and faces. Different from the existing methods, DIMNet does not explicitly learn the joint relationship between the mo dalities. Instead, DIMNet learns a shared representation for different modalities by mapping them individually to their common covariates. These shared representations can then be used to find the correspondences between the modalities. We show empirically that DIMNet is able to achieve better performance than other current methods, with the additional benefits of being conceptually simpler and less data-intensive.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا