ترغب بنشر مسار تعليمي؟ اضغط هنا

Voices Obscured in Complex Environmental Settings (VOICES) corpus

98   0   0.0 ( 0 )
 نشر من قبل Maria Alejandra Barrios
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces the Voices Obscured In Complex Environmental Settings (VOICES) corpus, a freely available dataset under Creative Commons BY 4.0. This dataset will promote speech and signal processing research of speech recorded by far-field microphones in noisy room conditions. Publicly available speech corpora are mostly composed of isolated speech at close-range microphony. A typical approach to better represent realistic scenarios, is to convolve clean speech with noise and simulated room response for model training. Despite these efforts, model performance degrades when tested against uncurated speech in natural conditions. For this corpus, audio was recorded in furnished rooms with background noise played in conjunction with foreground speech selected from the LibriSpeech corpus. Multiple sessions were recorded in each room to accommodate for all foreground speech-background noise combinations. Audio was recorded using twelve microphones placed throughout the room, resulting in 120 hours of audio per microphone. This work is a multi-organizational effort led by SRI International and Lab41 with the intent to push forward state-of-the-art distant microphone approaches in signal processing and speech recognition.



قيم البحث

اقرأ أيضاً

Voice profiling aims at inferring various human parameters from their speech, e.g. gender, age, etc. In this paper, we address the challenge posed by a subtask of voice profiling - reconstructing someones face from their voice. The task is designed t o answer the question: given an audio clip spoken by an unseen person, can we picture a face that has as many common elements, or associations as possible with the speaker, in terms of identity? To address this problem, we propose a simple but effective computational framework based on generative adversarial networks (GANs). The network learns to generate faces from voices by matching the identities of generated faces to those of the speakers, on a training set. We evaluate the performance of the network by leveraging a closely related task - cross-modal matching. The results show that our model is able to generate faces that match several biometric characteristics of the speaker, and results in matching accuracies that are much better than chance.
Thanks to improvements in machine learning techniques, including deep learning, speech synthesis is becoming a machine learning task. To accelerate speech synthesis research, we are developing Japanese voice corpora reasonably accessible from not onl y academic institutions but also commercial companies. In 2017, we released the JSUT corpus, which contains 10 hours of reading-style speech uttered by a single speaker, for end-to-end text-to-speech synthesis. For more general use in speech synthesis research, e.g., voice conversion and multi-speaker modeling, in this paper, we construct the JVS corpus, which contains voice data of 100 speakers in three styles (normal, whisper, and falsetto). The corpus contains 30 hours of voice data including 22 hours of parallel normal voices. This paper describes how we designed the corpus and summarizes the specifications. The corpus is available at our project page.
131 - Hao Liang , Lulan Yu , Guikang Xu 2021
Multiple studies in the past have shown that there is a strong correlation between human vocal characteristics and facial features. However, existing approaches generate faces simply from voice, without exploring the set of features that contribute t o these observed correlations. A computational methodology to explore this can be devised by rephrasing the question to: how much would a target face have to change in order to be perceived as the originator of a source voice? With this in perspective, we propose a framework to morph a target face in response to a given voice in a way that facial features are implicitly guided by learned voice-face correlation in this paper. Our framework includes a guided autoencoder that converts one face to another, controlled by a unique model-conditioning component called a gating controller which modifies the reconstructed face based on input voice recordings. We evaluate the framework on VoxCelab and VGGFace datasets through human subjects and face retrieval. Various experiments demonstrate the effectiveness of our proposed model.
To date, mainstream target speech separation (TSS) approaches are formulated to estimate the complex ratio mask (cRM) of the target speech in time-frequency domain under supervised deep learning framework. However, the existing deep models for estima ting cRM are designed in the way that the real and imaginary parts of the cRM are separately modeled using real-valued training data pairs. The research motivation of this study is to design a deep model that fully exploits the temporal-spectral-spatial information of multi-channel signals for estimating cRM directly and efficiently in complex domain. As a result, a novel TSS network is designed consisting of two modules, a complex neural spatial filter (cNSF) and an MVDR. Essentially, cNSF is a cRM estimation model and an MVDR module is cascaded to the cNSF module to reduce the nonlinear speech distortions introduced by neural network. Specifically, to fit the cRM target, all input features of cNSF are reformulated into complex-valued representations following the supervised learning paradigm. Then, to achieve good hierarchical feature abstraction, a complex deep neural network (cDNN) is delicately designed with U-Net structure. Experiments conducted on simulated multi-channel speech data demonstrate the proposed cNSF outperforms the baseline NSF by 12.1% scale-invariant signal-to-distortion ratio and 33.1% word error rate.
Solar-like oscillations in red-giant stars are now commonly detected in thousands of stars with space telescopes such as the NASA Kepler mission. Parallel radial velocity and photometric measurements would help to better understand the physics govern ing the amplitudes of solar-like oscillators. Yet, most target stars for space photometry are too faint for light-demanding ground-based spectroscopy. The BRITE Constellation satellites provide a unique opportunity of two-color monitoring of the flux variations of bright luminous red giants. Those targets are also bright enough to be monitored with high-resolution spectrographs on small telescopes, such as the SONG Network. In these proceedings, we provide a first overview of our comprehensive, multi-year campaign utilizing both BRITE and SONG to seismically characterize Aldebaran, one of the brightest red giants in the sky. Because luminous red giants can be seen at large distances, such well-characterized objects will serve as benchmark stars for galactic archeology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا