ﻻ يوجد ملخص باللغة العربية
We propose a scheme for the use of magnetic force microscopy to manipulate Majorana zero modes emergent in vortex cores of topological superconductors in the Fe(Se,Te) family. We calculate the pinning forces necessary to drag two vortices together and the resulting change in current and charge density of the composite fermion. A possible algorithm for measuring and altering Majorana pair parity is demonstrated.
The magneto-transport of a superconducting/ferromagnetic hybrid structure consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called magnetic vortex-state exhibits interesting properties. For certain magn
We study the formation of Majorana states in superconductors using the Majorana polarization, which can locally evaluate the Majorana character of a given state. We introduce the definition of the Majorana polarization vector and the corresponding cr
We consider a Josephson junction where the weak-link is formed by a non-centrosymmetric ferromagnet. In such a junction, the superconducting current acts as a direct driving force on the magnetic moment. We show that the a.c. Josephson effect generat
Using heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O7-{delta}), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effect
We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topologica