ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the formation of Majorana states using the Majorana Polarization

130   0   0.0 ( 0 )
 نشر من قبل Cristina Bena
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cristina Bena




اسأل ChatGPT حول البحث

We study the formation of Majorana states in superconductors using the Majorana polarization, which can locally evaluate the Majorana character of a given state. We introduce the definition of the Majorana polarization vector and the corresponding criterion to identify a Majorana state, and we apply it to some simple cases such as a one-dimensional wire with spin-orbit coupling, subject to a Zeeman magnetic field, and proximitized by a superconductor, as well as to an NS junction made with such a wire. We also apply this criterion to two-dimensional finite-size strips and squares subject to the same physical conditions. Our analysis demonstrates the necessity of using the Majorana polarization local order parameter to characterize the Majorana states, particularly in finite-size systems.

قيم البحث

اقرأ أيضاً

We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coup ling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and orbital Rashba fields. The competition of symmetric and antisymmetric spin-orbit coupling remarkably leads to a misalignment of the spin and orbital moments transverse to the orbital Rashba fields, whose manifestation is essentially orbital dependent. The behavior of the spin-orbital polarization along the applied Zeeman field reflects the presence of multiple Fermi points with inequivalent orbital character in the normal state. Additionally, the response to variation of the electronic parameters related with the degree of spin-orbital entanglement leads to distinctive evolution of the spin-orbital polarization of the MBSs. These findings unveil novel paths to single-out hallmarks relevant for the experimental detection of MBSs.
Second-order topological superconductors (SOTSs) host localized Majorana fermions and provide a new platform for topological quantum computation. We propose a remarkable and feasible way to realize networks based on SOTSs which allow to nucleate and braid Majorana bound states (MBSs) in an all-electrical manner without fine-tuning. The proposed setups are scalable in a straightforward way and can accommodate any even number of MBSs. Moreover, the MBSs in the networks allow defining qubits whose states can be initialized and read out by measuring Josephson currents flowing between SOTS islands. Our proposal can be implemented in monolayers of $text{FeTe}{}_{1-x}text{Se}_{x}$, monolayers of 1T-WTe$_2$, and inverted Hg(Cd)Te quantum wells in proximity to conventional superconductors.
There has been experimental evidence for the Majorana zero modes (MZMs) in solid state systems, which are building blocks for potential topological quantum computing. It is important to design devices, in which MZMs are easy to manipulate and possess a broad topological non-trivial parameter space for fusion and braiding. Here, we propose that the Majorana vortex states in iron-based superconducting nanowires fulfill these desirable conditions. This system has a radius-induced topological phase transition, giving a lower limit to the radius of the nanowire. In the topological phase, there is only one pair of MZMs in the nanowire over a wide range of radius, chemical potential, and external magnetic field. The wavefunction of the MZM has a sizable distribution at the side edge of the nanowire. This property enables one to control the interaction of the MZMs in neighboring vortex nanowires, and paves the way for Majorana fusion and braiding.
We propose a scheme for the use of magnetic force microscopy to manipulate Majorana zero modes emergent in vortex cores of topological superconductors in the Fe(Se,Te) family. We calculate the pinning forces necessary to drag two vortices together an d the resulting change in current and charge density of the composite fermion. A possible algorithm for measuring and altering Majorana pair parity is demonstrated.
Chiral $p$-wave superconductor is the primary example of topological systems hosting chiral Majorana edge states. Although candidate materials exist, the conclusive signature of chiral Majorana edge states has not yet been observed in experiments. He re we propose a smoking-gun experiment to detect the chiral Majorana edge states on the basis of theoretical results for the nonlocal conductance in a device consisting of a chiral $p$-wave superconductor and two ferromagnetic leads. The chiral nature of Majorana edge states causes an anomalously long-range and chirality-sensitive nonlocal transport in these junctions. These two drastic features enable us to identify the moving direction of chiral Majorana edge states in the single experimental setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا