ﻻ يوجد ملخص باللغة العربية
In contrast to the classic fashion for designing distributed end-to-end (e2e) TCP schemes for cellular networks (CN), we explore another design space by having the CN assist the task of the transport control. We show that in the emerging cellular architectures such as mobile/multi-access edge computing (MEC), where the servers are located close to the radio access network (RAN), significant improvements can be achieved by leveraging the nature of the logically centralized network measurements at the RAN and passing information such as its minimum e2e delay and access link capacity to each server. Particularly, a Network Assistance module (located at the mobile edge) will pair up with wireless scheduler to provide feedback information to each server and facilitate the task of congestion control. To that end, we present two Network Assisted schemes called NATCP (a clean-slate design replacing TCP at end-hosts) and NACubic (a backward compatible design requiring no change for TCP at end-hosts). Our preliminary evaluations using real cellular traces show that both schemes dramatically outperform existing schemes both in single-flow and multi-flow scenarios.
With the proliferation of mobile computing devices, the demand for continuous network connectivity regardless of physical location has spurred interest in the use of mobile ad hoc networks. Since Transmission Control Protocol (TCP) is the standard ne
With more applications moving to the cloud, cloud providers need to diagnose performance problems in a timely manner. Offline processing of logs is slow and inefficient, and instrumenting the end-host network stack would violate the tenants rights to
Crowdsourcing mobile users network performance has become an effective way of understanding and improving mobile network performance and user quality-of-experience. However, the current measurement method is still based on the landline measurement pa
This study is a first attempt to experimentally explore the range of performance bottlenecks that 5G mobile networks can experience. To this end, we leverage a wide range of measurements obtained with a prototype testbed that captures the key aspects
In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudl