ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

134   0   0.0 ( 0 )
 نشر من قبل Mircea Trif
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana states populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, thus far unexplored in the context of Majorana physics, allows to probe accurately the presence of Majorana bound states in the junction.

قيم البحث

اقرأ أيضاً

We study the combined effects of spin-orbit interaction, magnetic field, and Coulomb charging on the Josephson current-phase relation, I(varphi), for a multi-level quantum dot tunnel-contacted by two conventional s-wave superconductors with phase dif ference varphi. A general model is formulated and analyzed in the cotunneling regime (weak tunnel coupling) and in the deep subgap limit, fully taking into account interaction effects. We determine the conditions for observing a finite anomalous supercurrent I_a=I(varphi=0). For a two-level dot with spin-orbit coupling and arbitrarily weak Zeeman field B, we find the onset behavior I_apropto {rm sgn}(B) in the presence of interactions, suggesting the incipient spontaneous breakdown of time-reversal symmetry. We also provide conditions for realizing spatially separated (but topologically unprotected) Majorana bound states in this system, which have a clear signature in the 2pi-periodic current-phase relation.
79 - S. Ikegaya , Y. Asano 2016
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across the junction $varphi$ being $pi$, we will show that all of the Majorana bound states in the normal metal belong to the same chirality. Due to this pure chiral feature, the Majorana bound states retain their high degree of degeneracy at the zero energy even in the presence of random potential. As a consequence, the resonant transmission of a Cooper pair via the degenerate MBSs carries the Josephson current at $varphi=pi-0^+$, which explains the fractional current-phase relationship discussed in a number of previous papers.
The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic count erparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates providing a highly scalable and in-situ variation of the device properties. In addition, semiconductors with large $g$-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as $varphi_0$ Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to $0.9$, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.
We study one-dimensional topological SN and SNS long junctions obtained by placing a topological insulating nanowire in the proximity of either one or two SC finite-size leads. Using the Majorana Polarization order parameter (MP) introduced in Phys. Rev. Lett. 108, 096802 (2012)(arxiv:1109.5697) we find that the extended Andreev bound states (ABS) of the normal part of the wire acquire a finite MP: for a finite-size SN junction the ABS spectrum exhibits a zero-energy extended state which carries a full Majorana fermion, while the ABS of long SNS junctions with phase difference $pi$ transform into two zero-energy states carrying two Majorana fermions with the same MP. Given their extended character inside the whole normal link, and not only close to an interface, these Majorana-Andreev states can be directly detected in tunneling spectroscopy experiments.
Gate-tunable semiconductor-superconductor nanowires with superconducting leads form exotic Josephson junctions that are a highly desirable platform for two types of qubits: those with topological superconductivity (Majorana qubits) and those based on tunable anharmonicity (gatemon qubits). Controlling their behavior, however, requires understanding their electrostatic environment and electronic structure. Here we study gated InAs nanowires with epitaxial aluminum shells. By measuring current-phase relations (CPR) and comparing them with analytical and numerical calculations, we show that we can tune the number of modes, determine the transparency of each mode, and tune into regimes in which electron-electron interactions are apparent, indicating the presence of a quantum dot. To take into account electrostatic and geometrical effects, we perform microscopic self-consistent Schrodinger-Poisson numerical simulations, revealing the energy spectrum of Andreev states in the junction as well as their spatial distribution. Our work systematically demonstrates the effect of device geometry, gate voltage and phase bias on mode behavior, providing new insights into ongoing experimental efforts and predictive device design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا