ﻻ يوجد ملخص باللغة العربية
ALMA 870$mu$m continuum imaging has uncovered a population of blends of multiple dusty star-forming galaxies (DSFGs) in sources originally detected with the Herschel Space Observatory. However, their pairwise separations are much smaller that what is found by ALMA follow-up of other single-dish surveys or expected from theoretical simulations. Using ALMA and VLA, we have targeted three of these systems to confirm whether the multiple 870$mu$m continuum sources lie at the same redshift, successfully detecting $^{12}$CO($J = 3$-2) and $^{12}$CO($J = 1$-0) lines and being able to confirm that in the three cases all the multiple DSFGs are likely physically associated within the same structure. Therefore, we report the discovery of two new gas-rich dusty protocluster cores (HELAISS02, $z = 2.171 pm 0.004$; HXMM20, $z = 2.602 pm 0.002$). The third target is located in the well known COSMOS overdensity at $z = 2.51$ (named CL J1001+0220 in the literature), for which we do not find any new secure CO(1-0) detection, although some of its members show only tentative detections and require further confirmation. From the gas, dust, and stellar properties of the two new protocluster cores, we find very large molecular gas fractions yet low stellar masses, pushing the sources above the main sequence, while not enhancing their star formation efficiency. We suggest that the sources might be newly formed galaxies migrating to the main sequence. The properties of the three systems compared to each other and to field galaxies may suggest a different evolutionary stage between systems.
We present SCUBA-2 850-$mu$m observations of 13 candidate starbursting protoclusters selected using Planck and Herschel data. The cumulative number counts of the 850-$mu$m sources in 9/13 of these candidate protoclusters show significant overdensitie
We test the accuracy of ALMA flux density calibration by comparing ALMA flux density measurements of extragalactic sources to measurements made by the Planck mission; Planck is absolutely calibrated to sub-percent precision using the dipole signal in
To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. Our goal is to study grain growth
We measure the 850-$mu$m source densities of 46 candidate protoclusters selected from the Planck High-z catalogue (PHz) and the Planck Catalogue of Compact Sources (PCCS) that were followed up with Herschel-SPIRE and SCUBA-2. This paper aims to searc
We present new Herschel observations of four massive, Sunyaev-Zeldovich Effect (SZE)-selected clusters at $0.3 leq z leq 1.1$, two of which have also been observed with ALMA. We detect 19 Herschel/PACS counterparts to spectroscopically confirmed clus