ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations

152   0   0.0 ( 0 )
 نشر من قبل Greta Guidi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To characterize the mechanisms of planet formation it is crucial to investigate the properties and evolution of protoplanetary disks around young stars, where the initial conditions for the growth of planets are set. Our goal is to study grain growth in the disk of the young, intermediate mass star HD163296 where dust processing has already been observed, and to look for evidence of growth by ice condensation across the CO snowline, already identified in this disk with ALMA. Under the hypothesis of optically thin emission we compare images at different wavelengths from ALMA and VLA to measure the opacity spectral index across the disk and thus the maximum grain size. We also use a Bayesian tool based on a two-layer disk model to fit the observations and constrain the dust surface density. The measurements of the opacity spectral index indicate the presence of large grains and pebbles ($geq$1 cm) in the inner regions of the disk (inside $sim$50 AU) and smaller grains, consistent with ISM sizes, in the outer disk (beyond 150 AU). Re-analysing ALMA Band 7 Science Verification data we find (radially) unresolved excess continuum emission centered near the location of the CO snowline at $sim$90 AU. Our analysis suggests a grain size distribution consistent with an enhanced production of large grains at the CO snowline and consequent transport to the inner regions. Our results combined with the excess in infrared scattered light found by Garufi et al. (2014) suggests the presence of a structure at 90~AU involving the whole vertical extent of the disk. This could be evidence for small scale processing of dust at the CO snowline.

قيم البحث

اقرأ أيضاً

The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracer s of distinct physical regions. In particular, DCO+ is expected to have an enhanced abundance within a few Kelvin of the CO freezeout temperature of 19 K, making it a useful probe of the cold disk midplane. We compare ALMA line observations of HD 163296 to a grid of models. We vary the upper- and lower-limit temperatures of the region in which DCO+ is present as well as the abundance of DCO+ in order to fit channel maps of the DCO+ J=5-4 line. To determine the abundance enhancement compared to the general interstellar medium, we carry out similar fitting to HCO+ J=4-3 and H13CO+ J=4-3 observations. ALMA images show centrally peaked extended emission from HCO+ and H13CO+. DCO+ emission lies in a resolved ring from ~110 to 160 AU. The outer radius approximately corresponds to the size of the CO snowline as measured by previous lower resolution observations of CO lines in this disk. The ALMA DCO+ data now resolve and image the CO snowline directly. In the best fitting models, HCO+ exists in a region extending from the 19 K isotherm to the photodissociation layer with an abundance of 3x10^-10 relative to H2. DCO+ exists within the 19-21 K region of the disk with an abundance ratio [DCO+] / [HCO+] = 0.3. This represents a factor of 10^4 enhancement of the DCO+ abundance within this narrow region of the HD 163296 disk. Such a high enhancement has only previously been seen in prestellar cores. The inferred abundances provide a lower limit to the ionization fraction in the midplane of the cold outer disk (approximately greater than 4x10^-10), and suggest the utility of DCO+ as a tracer of its parent molecule H2D+. Abridged
We present 870 $mu$m ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fract ion increases steadily toward the center of the disk, reaching a peak value of ~1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 $mu$m) and IM Lup (61 $mu$m, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter (or even centimeter) sized grains.
As protostars evolve from optically faint / infrared bright (Class I) sources to optically bright / infrared faint (Class II) the solid material in their surrounding disks accumulates into planetesimals and protoplanets. The nearby, young Ophiuchus s tar-forming region contains hundreds of protostars in a range of evolutionary states. Using the Atacama Large Millimeter Array to observe their millimeter continuum emission, we have measured masses of, or placed strong upper limits on, the dust content of 279 disks. The masses follow a log-normal distribution with a clear trend of decreasing mass from less to more evolved protostellar infrared class. The (logarithmic) mean Class I disk mass, M = 3.8 M_Earth, is about 5 times greater than the mean Class II disk mass, but the dispersion in each class is so high, sigma(logM) ~ 0.8-1, that there is a large overlap between the two distributions. The disk mass distribution of flat-spectrum protostars lies in between Classes I and II. In addition, three Class III sources with little to no infrared excess are detected with low disk masses, M ~ 0.3 M_Earth. Despite the clear trend of decreasing disk mass with protostellar evolutionary state in this region, a comparison with surveys of Class II disks in other regions shows that masses do not decrease monotonically with age. This suggests that the cloud-scale environment may determine the initial disk mass scale or that there is substantial dust regeneration after 1 Myr.
We report Submillimeter Array (SMA) observations of CO (J=2--1, 3--2 and 6--5) and its isotopologues (13CO J=2--1, C18O J=2--1 and C17O J=3--2) in the disk around the Herbig Ae star HD 163296 at ~2 (250 AU) resolution, and interpret these data in the framework of a model that constrains the radial and vertical location of the line emission regions. First, we develop a physically self-consistent accretion disk model with an exponentially tapered edge that matches the spectral energy distribution and spatially resolved millimeter dust continuum emission. Then, we refine the vertical structure of the model using wide range of excitation conditions sampled by the CO lines, in particular the rarely observed J=6--5 transition. By fitting 13CO data in this structure, we further constrain the vertical distribution of CO to lie between a lower boundary below which CO freezes out onto dust grains (T ~ 19 K) and an upper boundary above which CO can be photodissociated (the hydrogen column density from the disk surface is ~ 10^{21} cm-2). The freeze-out at 19 K leads to a significant drop in the gas-phase CO column density beyond a radius of ~155 AU, a CO snow line that we directly resolve. By fitting the abundances of all CO isotopologues, we derive isotopic ratios of 12C/13C, 16O/18O and 18O/17O that are consistent with quiescent interstellar gas-phase values. This detailed model of the HD 163296 disk demonstrates the potential of a staged, parametric technique for constructing unified gas and dust structure models and constraining the distribution of molecular abundances using resolved multi-transition, multi-isotope observations.
We present a detailed multi-wavelength characterization of the multi-ring disk of HD 169142. We report new ALMA observations at 3 mm and analyze them together with archival 0.89 and 1.3 mm data. Our observations resolve three out of the four rings in the disk previously seen in high-resolution ALMA data. A simple parametric model is used to estimate the radial profile of the dust optical depth, temperature, density, and particle size distribution. We find that the multiple ring features of the disk are produced by annular accumulations of large particles, probably associated with gas pressure bumps. Our model indicates that the maximum dust grain size in the rings is $sim1$ cm, with slightly flatter power-law size distributions than the ISM-like size distribution ($psim3.5$) found in the gaps. In particular, the inner ring ($sim26$ au) is associated with a strong and narrow buildup of dust particles that could harbor the necessary conditions to trigger the streaming instability. According to our analysis, the snowlines of the most important volatiles do not coincide with the observed substructures. We explore different ring formation mechanisms and find that planet-disk interactions are the most likely scenario to explain the main features of HD 169142. Overall, our multi-wavelength analysis provides some of the first unambiguous evidence of the presence of radial dust traps in the rings of HD 169142. A similar analysis in a larger sample of disks could provide key insights on the impact that disk substructures have on the dust evolution and planet formation processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا