ﻻ يوجد ملخص باللغة العربية
A probabilistic model describes a system in its observational state. In many situations, however, we are interested in the systems response under interventions. The class of structural causal models provides a language that allows us to model the behaviour under interventions. It can been taken as a starting point to answer a plethora of causal questions, including the identification of causal effects or causal structure learning. In this chapter, we provide a natural and straight-forward extension of this concept to dynamical systems, focusing on continuous time models. In particular, we introduce two types of causal kinetic models that differ in how the randomness enters into the model: it may either be considered as observational noise or as systematic driving noise. In both cases, we define interventions and therefore provide a possible starting point for causal inference. In this sense, the book chapter provides more questions than answers. The focus of the proposed causal kinetic models lies on the dynamics themselves rather than corresponding stationary distributions, for example. We believe that this is beneficial when the aim is to model the full time evolution of the system and data are measured at different time points. Under this focus, it is natural to consider interventions in the differential equations themselves.
In this paper, we consider modeling missing dynamics with a nonparametric non-Markovian model, constructed using the theory of kernel embedding of conditional distributions on appropriate Reproducing Kernel Hilbert Spaces (RKHS), equipped with orthon
Complex dynamical systems are used for predictions in many domains. Because of computational costs, models are truncated, coarsened, or aggregated. As the neglected and unresolved terms become important, the utility of model predictions diminishes. W
Among Judea Pearls many contributions to Causality and Statistics, the graphical d-separation} criterion, the do-calculus and the mediation formula stand out. In this chapter we show that d-separation} provides direct insight into an earlier causal m
In many application areas---lending, education, and online recommenders, for example---fairness and equity concerns emerge when a machine learning system interacts with a dynamically changing environment to produce both immediate and long-term effect
Modern RNA sequencing technologies provide gene expression measurements from single cells that promise refined insights on regulatory relationships among genes. Directed graphical models are well-suited to explore such (cause-effect) relationships. H