ﻻ يوجد ملخص باللغة العربية
We propose a practical Bayesian optimization method using Gaussian process regression, of which the marginal likelihood is maximized where the number of model selection steps is guided by a pre-defined threshold. Since Bayesian optimization consumes a large portion of its execution time in finding the optimal free parameters for Gaussian process regression, our simple, but straightforward method is able to mitigate the time complexity and speed up the overall Bayesian optimization procedure. Finally, the experimental results show that our method is effective to reduce the execution time in most of cases, with less loss of optimization quality.
We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structur
This paper presents novel mixed-type Bayesian optimization (BO) algorithms to accelerate the optimization of a target objective function by exploiting correlated auxiliary information of binary type that can be more cheaply obtained, such as in polic
We propose a practical Bayesian optimization method over sets, to minimize a black-box function that takes a set as a single input. Because set inputs are permutation-invariant, traditional Gaussian process-based Bayesian optimization strategies whic
Marginal-likelihood based model-selection, even though promising, is rarely used in deep learning due to estimation difficulties. Instead, most approaches rely on validation data, which may not be readily available. In this work, we present a scalabl
We consider estimating the marginal likelihood in settings with independent and identically distributed (i.i.d.) data. We propose estimating the predictive distributions in a sequential factorization of the marginal likelihood in such settings by usi