ﻻ يوجد ملخص باللغة العربية
An entangled photon experiment has been performed with a large variation of the temperature of the non-linear crystal generating the entangled pair by spontaneous downconversion. The photon pairs are separated by a nonpolarizing beamsplitter, and the polarization modes are mixed by half wave plates. The correlation function of the coincidences is studied as a function of the temperature. In the presence of a narrow interference filter we observe that the correlation changes between -1 and +1 about seven times within a temperature interval of about 30 degrees C. We show that the common simplified single-mode pair representation of entangled photons is insufficient to describe the results, but that the biphoton description that includes frequency and phase details gives close to perfect fit with experimental data for two different choices of interference filters. We explain the main ideas of the underlying physics, and give an interpretation of the two-photon amplitude which provides an intuitive understanding of the effect of changing the temperature and inserting interference filters.
Pairs of photons entangled in their time-frequency degree of freedom are of great interest in quantum optics research and applications, due to their relative ease of generation and their high capacity for encoding information. Here we analyze, both t
We study the interference structure of the second-order intensity correlation function for polarization-entangled two-photon light obtained from type-II collinear frequency-degenerate spontaneous parametric down-conversion (SPDC). The structure is vi
The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fund
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quant
We report an electrically driven semiconductor single photon source capable of emitting photons with a coherence time of up to 400 ps under fixed bias. It is shown that increasing the injection current causes the coherence time to reduce and this eff