ﻻ يوجد ملخص باللغة العربية
We report an electrically driven semiconductor single photon source capable of emitting photons with a coherence time of up to 400 ps under fixed bias. It is shown that increasing the injection current causes the coherence time to reduce and this effect is well explained by the fast modulation of a fluctuating environment. Hong-Ou-Mandel type two-photon interference using a Mach-Zehnder interferometer is demonstrated using this source to test the indistinguishability of individual photons by post-selecting events where two photons collide at a beamsplitter. Finally, we consider how improvements in our detection system can be used to achieve a higher interference visibility.
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We fin
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based
An entangled photon experiment has been performed with a large variation of the temperature of the non-linear crystal generating the entangled pair by spontaneous downconversion. The photon pairs are separated by a nonpolarizing beamsplitter, and the
Interference of a single photon generated from a single quantum dot is observed between two photon polarization modes. Each emitted single photon has two orthogonal polarization modes associated with the solid-state single photon source, in which two
Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fiber networks can be effectively used as a transport medi