ترغب بنشر مسار تعليمي؟ اضغط هنا

Dramatic X-ray spectral variability of a Compton-thick type-1 QSO at $zsim 1$

257   0   0.0 ( 0 )
 نشر من قبل Torben Simm
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Torben Simm




اسأل ChatGPT حول البحث

We report on the discovery of a dramatic X-ray spectral variability event observed in a $zsim 1$ broad line type-1 QSO. The XMM-Newton spectrum from the year 2000 is characterized by an unobscured power-law spectrum with photon index of $Gammasim 2$, a column density of $N_{mathrm{H}}sim 5times 10^{20},mathrm{cm^{-2}}$, and no prominent reflection component. Five years later, Chandra captured the source in a heavily-obscured, reflection-dominated state. The observed X-ray spectral variability could be caused by a Compton-thick cloud with $N_{mathrm{H}}sim 2times 10^{24},mathrm{cm^{-2}}$ eclipsing the direct emission of the hot corona, implying an extreme $N_{mathrm{H}}$ variation never before observed in a type-1 QSO. An alternative scenario is a corona that switched off in between the observations. In addition, both explanations require a significant change of the X-ray luminosity prior to the obscuration or fading of the corona and/or a change of the relative geometry of the source/reflector system. Dramatic X-ray spectral variability of this kind could be quite common in type-1 QSOs, considering the relatively few datasets in which such an event could have been identified. Our analysis implies that there may be a population of type-1 QSOs which are Compton-thick in the X-rays when observed at any given time.

قيم البحث

اقرأ أيضاً

We present a detailed X-ray spectral analysis of 1152 AGNs selected in the Chandra Deep Fields (CDFs), in order to identify highly obscured AGNs ($N_{rm H} > 10^{23} rm cm^{-2}$). By fitting spectra with physical models, 436 (38%) sources with $L_{rm X} > 10^{42} rm erg s^{-1}$ are confirmed to be highly obscured, including 102 Compton-thick (CT) candidates. We propose a new hardness-ratio measure of the obscuration level which can be used to select highly obscured AGN candidates. The completeness and accuracy of applying this method to our AGNs are 88% and 80%, respectively. The observed logN-logS relation favors cosmic X-ray background models that predict moderate (i.e., between optimistic and pessimistic) CT number counts. 19% (6/31) of our highly obscured AGNs that have optical classifications are labeled as broad-line AGNs, suggesting that, at least for part of the AGN population, the heavy X-ray obscuration is largely a line-of-sight effect, i.e., some high-column-density clouds on various scales (but not necessarily a dust-enshrouded torus) along our sightline may obscure the compact X-ray emitter. After correcting for several observational biases, we obtain the intrinsic NH distribution and its evolution. The CT-to-highly-obscured fraction is roughly 52% and is consistent with no evident redshift evolution. We also perform long-term (~17 years in the observed frame) variability analyses for 31 sources with the largest number of counts available. Among them, 17 sources show flux variabilities: 31% (5/17) are caused by the change of NH, 53% (9/17) are caused by the intrinsic luminosity variability, 6% (1/17) are driven by both effects, and 2 are not classified due to large spectral fitting errors.
96 - G. Lanzuisi 2016
Compton Thick (CT) AGN are a key ingredient of Cosmic X-ray Background (CXB) synthesis models, but are still an elusive component of the AGN population beyond the local Universe. Multi-wavelength surveys are the only way to find them at z > 0.1, and a deep X-ray coverage is crucial in order to clearly identify them among star forming galaxies. As an example, the deep and wide COSMOS survey allowed us to select a total of 34 CT sources. This number is computed from the 64 nominal CT candidates, each counted for its N H probability distribution function. For each of these sources, rich multi-wavelength information is available, and is used to confirm their obscured nature, by comparing the expected AGN luminosity from spectral energy distribution fitting, with the absorption-corrected X-ray luminosity. While Chandra is more efficient, for a given exposure, in detecting CT candidates in current surveys (by a factor ~2), deep XMM-Newton pointings of bright sources are vital to fully characterize their properties: NH distribution above 10^25 cm^-2, reflection intensity etc., all crucial parameters of CXB models. Since luminous CT AGN at high redshift are extremely rare, the future of CT studies at high redshift will have to rely on the large area surveys currently underway, such as XMM-XXL and Stripe82, and will then require dedicated follow-up with XMM-Newton, while waiting for the advent of the ESA mission Athena.
We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey (KISS). The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observati ons suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z=0.840, however with unusually strong narrow emission lines. The estimated black hole mass of ~ 10^7 Msun implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~ 4 x 10^2 - 3 x 10^3, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and gamma-ray loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.
We present the spatial analysis of five Compton thick (CT) active galactic nuclei (AGNs), including MKN 573, NGC 1386, NGC 3393, NGC 5643, and NGC 7212, for which high resolution Chandra observations are available. For each source, we find hard X-ray emission (>3 keV) extending to ~kpc scales along the ionization cone, and for some sources, in the cross-cone region. This collection represents the first, high-signal sample of CT AGN with extended hard X-ray emission for which we can begin to build a more complete picture of this new population of AGN. We investigate the energy dependence of the extended X-ray emission, including possible dependencies on host galaxy and AGN properties, and find a correlation between the excess emission and obscuration, suggesting a connection between the nuclear obscuring material and the galactic molecular clouds. Furthermore, we find that the soft X-ray emission extends farther than the hard X-rays along the ionization cone, which may be explained by a galactocentric radial dependence on the density of molecular clouds due to the orientation of the ionization cone with respect to the galactic disk. These results are consistent with other CT AGN with observed extended hard X-ray emission (e.g., ESO 428-G014 and the Ma et al. 2020 CT AGN sample), further demonstrating the ubiquity of extended hard X-ray emission in CT AGN.
The estimate of the number and space density of obscured AGN over cosmic time still represents an open issue. While the obscured AGN population is a key ingredient of the X-ray background synthesis models and is needed to reproduce its shape, a compl ete census of obscured AGN is still missing. Here we test the selection of obscured sources among the local 12-micron sample of Seyfert galaxies. Our selection is based on a difference up to three orders of magnitude in the ratio between the AGN bolometric luminosity, derived from the spectral energy distribution (SED) decomposition, and the same quantity obtained by the published XMM-Newton 2-10 keV luminosity. The selected sources are UGC05101, NGC1194 and NGC3079 for which the available X-ray wide bandpass, from Chandra and XMM-Newton plus NuSTAR data, extending to energies up to ~30-45 keV, allows us an accurate determination of the column density, and hence of the true intrinsic power. The newly derived NH values clearly indicate heavy obscuration (about 1.2, 2.1 and 2.4 x10^{24} cm-2 for UGC05101, NGC1194 and NGC3079, respectively) and are consistent with the prominent silicate absorption feature observed in the Spitzer-IRS spectra of these sources (at 9.7 micron rest frame). We finally checked that the resulting X-ray luminosities in the 2-10 keV band are in good agreement with those derived from the mid-IR band through empirical L_MIR-L_X relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا