ترغب بنشر مسار تعليمي؟ اضغط هنا

SPDE limit of the global fluctuations in rank-based models

50   0   0.0 ( 0 )
 نشر من قبل Mykhaylo Shkolnikov
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider systems of diffusion processes (particles) interacting through their ranks (also referred to as rank-based models in the mathematical finance literature). We show that, as the number of particles becomes large, the process of fluctuations of the empirical cumulative distribution functions converges to the solution of a linear parabolic SPDE with additive noise. The coefficients in the limiting SPDE are determined by the hydrodynamic limit of the particle system which, in turn, can be described by the porous medium PDE. The result opens the door to a thorough investigation of large equity markets and investment therein. In the course of the proof we also derive quantitative propagation of chaos estimates for the particle system.



قيم البحث

اقرأ أيضاً

We study two-dimensional stochastic differential equations (SDEs) of McKean--Vlasov type in which the conditional distribution of the second component of the solution given the first enters the equation for the first component of the solution. Such S DEs arise when one tries to invert the Markovian projection developed by Gyongy (1986), typically to produce an It^o process with the fixed-time marginal distributions of a given one-dimensional diffusion but richer dynamical features. We prove the strong existence of stationary solutions for these SDEs, as well as their strong uniqueness in an important special case. Variants of the SDEs discussed in this paper enjoy frequent application in the calibration of local stochastic volatility models in finance, despite the very limited theoretical understanding.
We extend a model of positive feedback and contagion in large mean-field systems, by introducing a common source of noise driven by Brownian motion. Although the driving dynamics are continuous, the positive feedback effect can lead to `blow-up pheno mena whereby solutions develop jump-discontinuities. Our main results are twofold and concern the conditional McKean--Vlasov formulation of the model. First and foremost, we show that there are global solutions to this McKean--Vlasov problem, which can be realised as limit points of a motivating particle system with common noise. Furthermore, we derive results on the occurrence of blow-ups, thereby showing how these events can be triggered or prevented by the pathwise realisations of the common noise.
We present a simple uniqueness argument for a collection of McKean-Vlasov problems that have seen recent interest. Our first result shows that, in the weak feedback regime, there is global uniqueness for a very general class of random drivers. By wea k feedback we mean the case where the contagion parameters are small enough to prevent blow-ups in solutions. Next, we specialise to a Brownian driver and show how the same techniques can be extended to give short-time uniqueness after blow-ups, regardless of the feedback strength. The heart of our approach is a surprisingly simple probabilistic comparison argument that is robust in the sense that it does not ask for any regularity of the solutions.
We propose an interacting particle system to model the evolution of a system of banks with mutual exposures. In this model, a bank defaults when its normalized asset value hits a lower threshold, and its default causes instantaneous losses to other b anks, possibly triggering a cascade of defaults. The strength of this interaction is determined by the level of the so-called non-core exposure. We show that, when the size of the system becomes large, the cumulative loss process of a bank resulting from the defaults of other banks exhibits discontinuities. These discontinuities are naturally interpreted as systemic events, and we characterize them explicitly in terms of the level of non-core exposure and the fraction of banks that are about to default. The main mathematical challenges of our work stem from the very singular nature of the interaction between the particles, which is inherited by the limiting system. A similar particle system is analyzed in [DIRT15a] and [DIRT15b], and we build on and extend their results. In particular, we characterize the large-population limit of the system and analyze the jump times, the regularity between jumps, and the local uniqueness of the limiting process.
In the seminal work [9], several macroscopic market observables have been introduced, in an attempt to find characteristics capturing the diversity of a financial market. Despite the crucial importance of such observables for investment decisions, a concise mathematical description of their dynamics has been missing. We fill this gap in the setting of rank-based models and expect our ideas to extend to other models of large financial markets as well. The results are then used to study the performance of multiplicatively and additively functionally generated portfolios, in particular, over short-term and medium-term horizons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا