ﻻ يوجد ملخص باللغة العربية
We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {mu}m, which is the current wavelength limit for commercial cw EC-QCLs.
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate exper
We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-$mu$m to the secondary frequency standard of this spectral region, a CO2 laser stabilized on a saturated absorption line of OsO4. The stability and accuracy of the standard a
We report on two ultrastable lasers each stabilized to independent silicon Fabry-Perot cavities operated at 124 K. The fractional frequency instability of each laser is completely determined by the fundamental thermal Brownian noise of the mirror coa
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadb
Dual-comb spectroscopy is a rapidly developing technique that enables moving parts-free, simultaneously broadband and high-resolution measurements with microseconds of acquisition time. However, for high sensitivity measurements and extended duration