ﻻ يوجد ملخص باللغة العربية
In this paper, we study fairness in committee selection problems. We consider a general notion of fairness via stability: A committee is stable if no coalition of voters can deviate and choose a committee of proportional size, so that all these voters strictly prefer the new committee to the existing one. Our main contribution is to extend this definition to stability of a distribution (or lottery) over committees. We consider two canonical voter preference models: the Approval Set setting where each voter approves a set of candidates and prefers committees with larger intersection with this set; and the Ranking setting where each voter ranks committees based on how much she likes her favorite candidate in a committee. Our main result is to show that stable lotteries always exist for these canonical preference models. Interestingly, given preferences of voters over committees, the procedure for computing an approximately stable lottery is the same for both models and therefore extends to the setting where some voters have the former preference structure and others have the latter. Our existence proof uses the probabilistic method and a new large deviation inequality that may be of independent interest.
In the committee selection problem, we are given $m$ candidates, and $n$ voters. Candidates can have different weights. A committee is a subset of candidates, and its weight is the sum of weights of its candidates. Each voter expresses an ordinal ran
We consider the problem of committee selection from a fixed set of candidates where each candidate has multiple quantifiable attributes. To select the best possible committee, instead of voting for a candidate, a voter is allowed to approve the prefe
We propose a novel formulation of group fairness in the contextual multi-armed bandit (CMAB) setting. In the CMAB setting a sequential decision maker must at each time step choose an arm to pull from a finite set of arms after observing some context
Course assignment is a wide-spread problem in education and beyond. Often students have preferences for bundles of course seats or course schedules over the week, which need to be considered. The problem is a challenging distributed scheduling task r
The market economy deals with many interacting agents such as buyers and sellers who are autonomous intelligent agents pursuing their own interests. One such multi-agent system (MAS) that plays an important role in auctions is the combinatorial aucti