ﻻ يوجد ملخص باللغة العربية
The market economy deals with many interacting agents such as buyers and sellers who are autonomous intelligent agents pursuing their own interests. One such multi-agent system (MAS) that plays an important role in auctions is the combinatorial auctioning system (CAS). We use this framework to define our concept of fairness in terms of what we call as basic fairness and extended fairness. The assumptions of quasilinear preferences and dominant strategies are taken into consideration while explaining fairness. We give an algorithm to ensure fairness in a CAS using a Generalized Vickrey Auction (GVA). We use an algorithm of Sandholm to achieve optimality. Basic and extended fairness are then analyzed according to the dominant strategy solution concept.
One of the Multi-Agent Systems that is widely used by various government agencies, buyers and sellers in a market economy, in such a manner so as to attain optimized resource allocation, is the Combinatorial Auctioning System (CAS). We study another
We study combinatorial auctions with bidders that exhibit endowment effect. In most of the previous work on cognitive biases in algorithmic game theory (e.g., [Kleinberg and Oren, EC14] and its follow-ups) the focus was on analyzing the implications
Mechanism design for one-sided markets has been investigated for several decades in economics and in computer science. More recently, there has been an increased attention on mechanisms for two-sided markets, in which buyers and sellers act strategic
We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non
In this note we study the greedy algorithm for combinatorial auctions with submodular bidders. It is well known that this algorithm provides an approximation ratio of $2$ for every order of the items. We show that if the valuations are vertex cover f