ترغب بنشر مسار تعليمي؟ اضغط هنا

Assigning Course Schedules: About Preference Elicitation, Fairness, and Truthfulness

224   0   0.0 ( 0 )
 نشر من قبل S\\\"oren Merting
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Course assignment is a wide-spread problem in education and beyond. Often students have preferences for bundles of course seats or course schedules over the week, which need to be considered. The problem is a challenging distributed scheduling task requiring decision support. First-Come First-Served (FCFS) is simple and the most widely used assignment rule in practice, but it leads to inefficient outcomes and envy in the allocation. Recent theoretical results suggest alternatives with attractive economic and computational properties. Bundled Probabilistic Serial (BPS) is a randomized mechanism satisfying ordinal efficiency, envy-freeness, and weak strategy-proofness. This mechanism also runs in polynomial time, which is important for the large problem instances in the field. We report empirical results from a first implementation of BPS at the Technical University of Munich, which allows us to provide important empirical metrics such as the size of the resulting matching, the average rank, the profile, and the popularity of the assignments. These metrics were central for the adoption of BPS. In particular, we compare these metrics to Random Serial Dictatorship with bundle bids (BRSD). The BRSD mechanism is used to simulate the wide-spread First-Come First-Served (FCFS) mechanism and it allows us to compare FCFS (BRSD) and BPS. While theoretically appealing, preference elicitation is a major challenge when considering preferences over exponentially many packages. We introduce tools to elicit preferences which reduce the number of parameters a student needs to a manageable set. The approach together with BPS yields a computationally effective tool to solve course assignment problems with thousands of students, and possibly provides an approach for other distributed scheduling tasks in organizations.

قيم البحث

اقرأ أيضاً

In this paper, we study fairness in committee selection problems. We consider a general notion of fairness via stability: A committee is stable if no coalition of voters can deviate and choose a committee of proportional size, so that all these voter s strictly prefer the new committee to the existing one. Our main contribution is to extend this definition to stability of a distribution (or lottery) over committees. We consider two canonical voter preference models: the Approval Set setting where each voter approves a set of candidates and prefers committees with larger intersection with this set; and the Ranking setting where each voter ranks committees based on how much she likes her favorite candidate in a committee. Our main result is to show that stable lotteries always exist for these canonical preference models. Interestingly, given preferences of voters over committees, the procedure for computing an approximately stable lottery is the same for both models and therefore extends to the setting where some voters have the former preference structure and others have the latter. Our existence proof uses the probabilistic method and a new large deviation inequality that may be of independent interest.
In markets such as digital advertising auctions, bidders want to maximize value rather than payoff. This is different to the utility functions typically assumed in auction theory and leads to different strategies and outcomes. We refer to bidders who maximize value as value bidders. While simple single-object auction formats are truthful, standard multi-object auction formats allow for manipulation. It is straightforward to show that there cannot be a truthful and revenue-maximizing deterministic auction mechanism with value bidders and general valuations. Approximation has been used as a means to achieve truthfulness, and we study which approximation ratios we can get from truthful approximation mechanisms. We show that the approximation ratio that can be achieved with a deterministic and truthful approximation mechanism with $n$ bidders and $m$ items cannot be higher than 1/n for general valuations. For randomized approximation mechanisms there is a framework with a ratio of O(sqrt(m)). We provide better ratios for environments with restricted valuations.
Preference queries incorporate the notion of binary preference relation into relational database querying. Instead of returning all the answers, such queries return only the best answers, according to a given preference relation. Preference queries a re a fast growing area of database research. Skyline queries constitute one of the most thoroughly studied classes of preference queries. A well known limitation of skyline queries is that skyline preference relations assign the same importance to all attributes. In this work, we study p-skyline queries that generalize skyline queries by allowing varying attribute importance in preference relations. We perform an in-depth study of the properties of p-skyline preference relations. In particular,we study the problems of containment and minimal extension. We apply the obtained results to the central problem of the paper: eliciting relative importance of attributes. Relative importance is implicit in the constructed p-skyline preference relation. The elicitation is based on user-selected sets of superior (positive) and inferior (negative) examples. We show that the computational complexity of elicitation depends on whether inferior examples are involved. If they are not, elicitation can be achieved in polynomial time. Otherwise, it is NP-complete. Our experiments show that the proposed elicitation algorithm has high accuracy and good scalability
Effective techniques for eliciting user preferences have taken on added importance as recommender systems (RSs) become increasingly interactive and conversational. A common and conceptually appealing Bayesian criterion for selecting queries is expect ed value of information (EVOI). Unfortunately, it is computationally prohibitive to construct queries with maximum EVOI in RSs with large item spaces. We tackle this issue by introducing a continuous formulation of EVOI as a differentiable network that can be optimized using gradient methods available in modern machine learning (ML) computational frameworks (e.g., TensorFlow, PyTorch). We exploit this to develop a novel, scalable Monte Carlo method for EVOI optimization, which is more scalable for large item spaces than methods requiring explicit enumeration of items. While we emphasize the use of this approach for pairwise (or k-wise) comparisons of items, we also demonstrate how our method can be adapted to queries involving subsets of item attributes or partial items, which are often more cognitively manageable for users. Experiments show that our gradient-based EVOI technique achieves state-of-the-art performance across several domains while scaling to large item spaces.
Metric elicitation is a recent framework for eliciting performance metrics that best reflect implicit user preferences. This framework enables a practitioner to adjust the performance metrics based on the application, context, and population at hand. However, available elicitation strategies have been limited to linear (or fractional-linear) functions of predictive rates. In this paper, we develop an approach to elicit from a wider range of complex multiclass metrics defined by quadratic functions of rates by exploiting their local linear structure. We apply this strategy to elicit quadratic metrics for group-based fairness, and also discuss how it can be generalized to higher-order polynomials. Our elicitation strategies require only relative preference feedback and are robust to both feedback and finite sample noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا