ﻻ يوجد ملخص باللغة العربية
A status updating communication system is examined, in which a transmitter communicates with a receiver over a noisy channel. The goal is to realize timely delivery of fresh data over time, which is assessed by an age-of-information (AoI) metric. Channel coding is used to combat the channel errors, and feedback is sent to acknowledge updates reception. In case decoding is unsuccessful, a hybrid ARQ protocol is employed, in which incremental redundancy (IR) bits are transmitted to enhance the decoding ability. This continues for some amount of time in case decoding remains unsuccessful, after which a new (fresh) status update is transmitted instead. In case decoding is successful, the transmitter has the option to idly wait for a certain amount of time before sending a new update. A general problem is formulated that optimizes the codeword and IR lengths for each update, and the waiting times, such that the long term average AoI is minimized. Stationary deterministic policies are investigated, in which the codeword and IR lengths are fixed for each update, and the waiting time is a deterministic function of the AoI. The optimal waiting policy is then derived, and is shown to have a threshold structure, in which the transmitter sends a new update only if the AoI grows above a certain threshold that is a function of the codeword and IR lengths. Choosing the codeword and IR lengths is discussed in the context of binary symmetric channels.
We consider a status update system in which the update packets need to be processed to extract the embedded useful information. The source node sends the acquired information to a computation unit (CU) which consists of a master node and $n$ worker n
We consider two closely related problems: anomaly detection in sensor networks and testing for infections in human populations. In both problems, we have $n$ nodes (sensors, humans), and each node exhibits an event of interest (anomaly, infection) wi
The effects of quantization and coding on the estimation quality of a Gauss-Markov, namely Ornstein-Uhlenbeck, process are considered. Samples are acquired from the process, quantized, and then encoded for transmission using either infinite increment
We consider a system in which an information source generates independent and identically distributed status update packets from an observed phenomenon that takes $n$ possible values based on a given pmf. These update packets are encoded at the trans
A status updating system is considered in which multiple data sources generate packets to be delivered to a destination through a shared energy harvesting sensor. Only one sources data, when available, can be transmitted by the sensor at a time, subj