ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing electrically undetectable room temperature surface-mobility of bulky topological insulators by spectroscopic techniques

184   0   0.0 ( 0 )
 نشر من قبل Byung Cheol Park
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High surface-mobility, which is attributable to topological protection, is a trademark of three-dimensional topological insulators (3DTIs). Exploiting surface-mobility indicates successful application of topological properties for practical purposes. However, the detection of the surface-mobility has been hindered by the inevitable bulk conduction. Even in the case of high-quality crystals, the bulk state forms the dominant channel of the electrical current. Therefore, with electrical transport measurement, the surface-mobility can be resolved only below-micrometer-thick crystals. The evaluation of the surface-mobility becomes more challenging at higher temperatures, where phonons can play a role. Here, using spectroscopic techniques, we successfully evaluated the surface-mobility of Bi2Te3 (BT) at room temperature (RT). We acquired the effective masses and mean scattering times for both the surface and bulk states using angle-resolved photoemission and terahertz time-domain spectroscopy. We revealed a record-high surface-mobility for BT, exceeding 33,000 cm^2/(Vs) per surface sheet, despite intrinsic limitations by the coexisting bulk state as well as phonons at RT. Our findings partially support the interesting conclusion that the topological protection persists at RT. Our approach could be applicable to other topological materials possessing multiband structures near the Fermi level.

قيم البحث

اقرأ أيضاً

Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for $Sb_2Te_3$, $Sb_2Se_3$, $Bi_2Te_3$ and $Bi_2Se_3$ crys tals. Our calculations predict that $Sb_2Te_3$, $Bi_2Te_3$ and $Bi_2Se_3$ are topological insulators, while $Sb_2Se_3$ is not. In particular, $Bi_2Se_3$ has a topologically non-trivial energy gap of $0.3 eV$, suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the $Gamma$ point.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tun ing the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.
Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we devise a novel tool to unveil TSS and to probe related plasmonic effects. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature Terahertz (THz) detection mediated by over-damped plasma-wave oscillations on the activated TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics.
The study of electron transport and scattering processes limiting electron mobility in high-quality semiconductor structures is central to solid-state electronics. Here, we uncover an unavoidable source of electron scattering which is caused by fluct uations of nuclear spins. We calculate the momentum relaxation time of electrons in quantum wells governed by the hyperfine interaction between electrons and nuclei and show that this time drastically depends on the spatial correlation of nuclear spins. Moreover, the scattering processes accompanied by a spin flip are a source of the backscattering of Dirac fermions at conducting surfaces of topological insulators.
We present a theoretical investigation of electron states hosted by magnetic domain walls on the 3D topological insulator surface. The consideration includes the domain walls with distinct vectorial and spatial textures. The study is carried out on t he basis of the Hamiltonian for quasi-relativistic fermions by using a continual approach and tight-binding calculations. We derive the spectral characteristics and spatial localization of the the one-dimensional low-energy states appearing at the domain walls. The antiphase domain walls are shown to generate the topologically protected chiral states with linear dispersion, the group velocity and spin-polarization direction of which depend on an easy axis orientation. In the case of an easy plane anisotropy, we predict a realization of a dispersionless state, flat band in the energy spectrum, that is spin-polarized along the surface normal. Modification of the surface states in the multi-domain case, which is approximated by a periodic set of domain walls, is described as well. We find that the magnetic domain walls with complex internal texture, such as Neel-like or Bloch-like walls, also host the topological states, although their spectrum and spin structure can be changed compared with the sharp wall case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا