ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral features of magnetic domain walls on surface of 3D topological insulators

115   0   0.0 ( 0 )
 نشر من قبل Igor Rusinov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical investigation of electron states hosted by magnetic domain walls on the 3D topological insulator surface. The consideration includes the domain walls with distinct vectorial and spatial textures. The study is carried out on the basis of the Hamiltonian for quasi-relativistic fermions by using a continual approach and tight-binding calculations. We derive the spectral characteristics and spatial localization of the the one-dimensional low-energy states appearing at the domain walls. The antiphase domain walls are shown to generate the topologically protected chiral states with linear dispersion, the group velocity and spin-polarization direction of which depend on an easy axis orientation. In the case of an easy plane anisotropy, we predict a realization of a dispersionless state, flat band in the energy spectrum, that is spin-polarized along the surface normal. Modification of the surface states in the multi-domain case, which is approximated by a periodic set of domain walls, is described as well. We find that the magnetic domain walls with complex internal texture, such as Neel-like or Bloch-like walls, also host the topological states, although their spectrum and spin structure can be changed compared with the sharp wall case.



قيم البحث

اقرأ أيضاً

Cylindrical nanowires made of soft magnetic materials, in contrast to thin strips, may host domain walls of two distinct topologies. Unexpectedly, we evidence experimentally the dynamic transformation of topology upon wall motion above a field thresh old. Micromagnetic simulations highlight the underlying precessional dynamics for one way of the transformation, involving the nucleation of a Bloch-point singularity, however, fail to reproduce the reverse process. This rare discrepancy between micromagnetic simulations and experiments raises fascinating questions in material and computer science.
The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall (DW) is a topological objec t that has been observed to follow this behavior. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya (DM) exchange constant. The time needed to accelerate a DW with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the DM exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral DWs. Such unique feature of chiral DWs can be utilized to move and position DWs with lower current, key to the development of storage class memory devices.
We theoretically study the magnetoresistance (MR) of two-dimensional massless Dirac electrons as found on the surface of three-dimensional topological insulators (3D TIs) that is capped by a ferromagnetic insulator (FI). We calculate charge and spin transport by Kubo and Boltzmann theories, taking into account the ladder-vertex correction and the in-scattering due to normal and magnetic disorder. The induced exchange splitting is found to generate an electric conductivity that depends on the magnetization orientation, but its form is very different from both the anisotropic and spin Hall MR. The in-plane MR vanishes identically for non-magnetic disorder, while out-of-plane magnetizations cause a large MR ratio. On the other hand, we do find an in-plane MR and planar Hall effect in the presence of magnetic disorder aligned with the FI magnetization. Our results may help understand recent transport measurements on TI|FI systems.
We experimentally study the structure and dynamics of magnetic domains in synthetic antiferromagnets based on Co/Ru/Co films. Dramatic effects arise from the interaction among the topological defects comprising the dual domain walls in these structur es. Under applied magnetic fields, the dual domain walls propagate following the dynamics of bi-meronic (bi-vortex/bi-antivortex) topological defects built in the walls. Application of an external field triggers a rich dynamical response: The propagation depends on mutual orientation and chirality of bi-vortices and bi-antivortices in the domain walls. For certain configurations, we observe sudden jumps of composite domain walls in increasing field, which are associated with the decay of composite skyrmions. These features allow for enhanced control of domain-wall motion in synthetic antiferromagnets with the potential of employing them as information carriers in future logic and storage devices.
178 - Pinyuan Wang , Jun Ge , Jiaheng Li 2020
Introducing magnetism into topological insulators breaks time-reversal symmetry, and the magnetic exchange interaction can open a gap in the otherwise gapless topological surface states. This allows various novel topological quantum states to be gene rated, including the quantum anomalous Hall effect (QAHE) and axion insulator states. Magnetic doping and magnetic proximity are viewed as being useful means of exploring the interaction between topology and magnetism. However, the inhomogeneity of magnetic doping leads to complicated magnetic ordering and small exchange gaps, and consequently the observed QAHE appears only at ultralow temperatures. Therefore, intrinsic magnetic topological insulators are highly desired for increasing the QAHE working temperature and for investigating topological quantum phenomena further. The realization and characterization of such systems are essential for both fundamental physics and potential technical revolutions. This review summarizes recent research progress in intrinsic magnetic topological insulators, focusing mainly on the antiferromagnetic topological insulator MnBi2Te4 and its family of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا