ﻻ يوجد ملخص باللغة العربية
Topological insulators (TIs) represent a novel quantum state of matter, characterized by edge or surface-states, showing up on the topological character of the bulk wave functions. Allowing electrons to move along their surface, but not through their inside, they emerged as an intriguing material platform for the exploration of exotic physical phenomena, somehow resembling the graphene Dirac-cone physics, as well as for exciting applications in optoelectronics, spintronics, nanoscience, low-power electronics, and quantum computing. Investigation of topological surface states (TSS) is conventionally hindered by the fact that in most of experimental conditions the TSS properties are mixed up with those of bulk-states. Here, we devise a novel tool to unveil TSS and to probe related plasmonic effects. By engineering Bi2Te(3-x)Sex stoichiometry, and by gating the surface of nanoscale field-effect-transistors, exploiting thin flakes of Bi2Te2.2Se0.8 or Bi2Se3, we provide the first demonstration of room-temperature Terahertz (THz) detection mediated by over-damped plasma-wave oscillations on the activated TSS of a Bi2Te2.2Se0.8 flake. The reported detection performances allow a realistic exploitation of TSS for large-area, fast imaging, promising superb impacts on THz photonics.
Weak antilocalization measurements has become a standard tool for studying quantum coherent transport in topological materials. It is often used to extract information about number of conducting channels and dephasing length of topological surface st
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
One of the hallmarks of topological insulators is the correspondence between the value of its bulk topological invariant and the number of topologically protected edge modes observed in a finite-sized sample. This bulk-boundary correspondence has bee
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tun
This study shows that a terahertz (THz) wave can be generated from the (001) surface of cleaved Bi$_{textrm{2}}$Se$_{textrm{3}}$ and Cu-doped Bi$_{textrm{2}}$Se$_{textrm{3}}$ single crystals using 800 nm femtosecond pulses. The generated THz power is