ﻻ يوجد ملخص باللغة العربية
Food computing is playing an increasingly important role in human daily life, and has found tremendous applications in guiding human behavior towards smart food consumption and healthy lifestyle. An important task under the food-computing umbrella is retrieval, which is particularly helpful for health related applications, where we are interested in retrieving important information about food (e.g., ingredients, nutrition, etc.). In this paper, we investigate an open research task of cross-modal retrieval between cooking recipes and food images, and propose a novel framework Adversarial Cross-Modal Embedding (ACME) to resolve the cross-modal retrieval task in food domains. Specifically, the goal is to learn a common embedding feature space between the two modalities, in which our approach consists of several novel ideas: (i) learning by using a new triplet loss scheme together with an effective sampling strategy, (ii) imposing modality alignment using an adversarial learning strategy, and (iii) imposing cross-modal translation consistency such that the embedding of one modality is able to recover some important information of corresponding instances in the other modality. ACME achieves the state-of-the-art performance on the benchmark Recipe1M dataset, validating the efficacy of the proposed technique.
Food retrieval is an important task to perform analysis of food-related information, where we are interested in retrieving relevant information about the queried food item such as ingredients, cooking instructions, etc. In this paper, we investigate
This paper presents a three-tier modality alignment approach to learning text-image joint embedding, coined as JEMA, for cross-modal retrieval of cooking recipes and food images. The first tier improves recipe text embedding by optimizing the LSTM ne
Nowadays, driven by the increasing concern on diet and health, food computing has attracted enormous attention from both industry and research community. One of the most popular research topics in this domain is Food Retrieval, due to its profound in
This paper introduces a two-phase deep feature calibration framework for efficient learning of semantics enhanced text-image cross-modal joint embedding, which clearly separates the deep feature calibration in data preprocessing from training the joi
When watching omnidirectional images (ODIs), subjects can access different viewports by moving their heads. Therefore, it is necessary to predict subjects head fixations on ODIs. Inspired by generative adversarial imitation learning (GAIL), this pape