ترغب بنشر مسار تعليمي؟ اضغط هنا

Saliency Prediction on Omnidirectional Images with Generative Adversarial Imitation Learning

99   0   0.0 ( 0 )
 نشر من قبل Li Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When watching omnidirectional images (ODIs), subjects can access different viewports by moving their heads. Therefore, it is necessary to predict subjects head fixations on ODIs. Inspired by generative adversarial imitation learning (GAIL), this paper proposes a novel approach to predict saliency of head fixations on ODIs, named SalGAIL. First, we establish a dataset for attention on ODIs (AOI). In contrast to traditional datasets, our AOI dataset is large-scale, which contains the head fixations of 30 subjects viewing 600 ODIs. Next, we mine our AOI dataset and determine three findings: (1) The consistency of head fixations are consistent among subjects, and it grows alongside the increased subject number; (2) The head fixations exist with a front center bias (FCB); and (3) The magnitude of head movement is similar across subjects. According to these findings, our SalGAIL approach applies deep reinforcement learning (DRL) to predict the head fixations of one subject, in which GAIL learns the reward of DRL, rather than the traditional human-designed reward. Then, multi-stream DRL is developed to yield the head fixations of different subjects, and the saliency map of an ODI is generated via convoluting predicted head fixations. Finally, experiments validate the effectiveness of our approach in predicting saliency maps of ODIs, significantly better than 10 state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

Given a grayscale photograph, the colorization system estimates a visually plausible colorful image. Conventional methods often use semantics to colorize grayscale images. However, in these methods, only classification semantic information is embedde d, resulting in semantic confusion and color bleeding in the final colorized image. To address these issues, we propose a fully automatic Saliency Map-guided Colorization with Generative Adversarial Network (SCGAN) framework. It jointly predicts the colorization and saliency map to minimize semantic confusion and color bleeding in the colorized image. Since the global features from pre-trained VGG-16-Gray network are embedded to the colorization encoder, the proposed SCGAN can be trained with much less data than state-of-the-art methods to achieve perceptually reasonable colorization. In addition, we propose a novel saliency map-based guidance method. Branches of the colorization decoder are used to predict the saliency map as a proxy target. Moreover, two hierarchical discriminators are utilized for the generated colorization and saliency map, respectively, in order to strengthen visual perception performance. The proposed system is evaluated on ImageNet validation set. Experimental results show that SCGAN can generate more reasonable colorized images than state-of-the-art techniques.
98 - Jisheng Li , Yuze He , Yubin Hu 2021
Omnidirectional video is an essential component of Virtual Reality. Although various methods have been proposed to generate content that can be viewed with six degrees of freedom (6-DoF), existing systems usually involve complex depth estimation, ima ge in-painting or stitching pre-processing. In this paper, we propose a system that uses a 3D ConvNet to generate a multi-sphere images (MSI) representation that can be experienced in 6-DoF VR. The system utilizes conventional omnidirectional VR camera footage directly without the need for a depth map or segmentation mask, thereby significantly simplifying the overall complexity of the 6-DoF omnidirectional video composition. By using a newly designed weighted sphere sweep volume (WSSV) fusing technique, our approach is compatible with most panoramic VR camera setups. A ground truth generation approach for high-quality artifact-free 6-DoF contents is proposed and can be used by the research and development community for 6-DoF content generation.
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew ork. Instead of directly maximizing rewards, GASIL focuses on reproducing past good trajectories, which can potentially make long-term credit assignment easier when rewards are sparse and delayed. GASIL can be easily combined with any policy gradient objective by using GASIL as a learned shaped reward function. Our experimental results show that GASIL improves the performance of proximal policy optimization on 2D Point Mass and MuJoCo environments with delayed reward and stochastic dynamics.
Conventional saliency prediction models typically learn a deterministic mapping from images to the corresponding ground truth saliency maps. In this paper, we study the saliency prediction problem from the perspective of generative models by learning a conditional probability distribution over saliency maps given an image, and treating the prediction as a sampling process. Specifically, we propose a generative cooperative saliency prediction framework based on the generative cooperative networks, where a conditional latent variable model and a conditional energy-based model are jointly trained to predict saliency in a cooperative manner. We call our model the SalCoopNets. The latent variable model serves as a fast but coarse predictor to efficiently produce an initial prediction, which is then refined by the iterative Langevin revision of the energy-based model that serves as a fine predictor. Such a coarse-to-fine cooperative saliency prediction strategy offers the best of both worlds. Moreover, we generalize our framework to the scenario of weakly supervised saliency prediction, where saliency annotation of training images is partially observed, by proposing a cooperative learning while recovering strategy. Lastly, we show that the learned energy function can serve as a refinement module that can refine the results of other pre-trained saliency prediction models. Experimental results show that our generative model can achieve state-of-the-art performance. Our code is publicly available at: url{https://github.com/JingZhang617/SalCoopNets}.
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac h to imitation learning (GAIL) and derive an optimization problem for our formulation, which we call it risk-sensitive GAIL (RS-GAIL). We then derive two differe

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا