ترغب بنشر مسار تعليمي؟ اضغط هنا

$Xi(1690)^-$ resonance production via $K^-p to K^+K^-Lambda$

91   0   0.0 ( 0 )
 نشر من قبل Seung-il Nam
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this talk, we investigate $Xi(1690)^-$ production from the $K^-pto K^+K^-Lambda$ reaction wit the effective Lagrangian method and consider the $s$- and $u$-channel $Sigma/Lambda$ ground states and resonances for the $Xi$-pole contributions, in addition to the $s$-channel $Lambda$, $u$-channel nucleon pole, and $t$-channel $K^-$-exchange for the $phi$-pole contributions. The $Xi$-pole includes $Xi(1320)$, $Xi(1535)$, $Xi(1690)(J^p=1/2^-)$, and $Xi(1820)(J^p=3/2^-)$. We compute the Dalitz plot density of $(d^2sigma/dM_{K^+K^-}dM_{K^-Lambda}$ at 4.2 GeV$/c$) and the total cross sections for the $K^-pto K^+K^-Lambda$. Employing the parameters from the fit, we present the cross sections for the two-body $K^-pto K^+Xi(1690)^-$ reaction near the threshold. We also demonstrate that the Dalitz plot analysis for $p_{K^-}=1.915 sim2.065$ GeV/c makes us to explore direct information for $Xi(1690)^-$ production, which can be done by future $K^-$ beam experiments.

قيم البحث

اقرأ أيضاً

363 - Seung-il Nam 2021
In the present work, we investigate the hidden-strangeness production process in the $S=+1$ channel via $K^+pto K^+phi,p$, focussing on the exotic textit{pentaquark} molecular $K^*Sigma$ bound state, assigned by $P^+_s(2071,3/2^-)$. For this purpose, we employ the effective Lagrangian approach in the tree-level Born approximation. Using the experimental and theoretical inputs for the exotic state and for the ground-state hadron interactions, the numerical results show a small but obvious peak structure from $P^+_s$ with the signal-to-background ratio $approx1.7,%$, and it is enhanced in the backward-scattering region of the outgoing $K^+$ in the center-of-mass frame. We also find that the contribution from the $K^*(1680,1^-)$ meson plays an important role to reproduce the data. The proton-spin polarizations are taken into account to find a way to reduce the background. The effects of the possible $27$-plet pentaquark $Theta^{++}_{27}$ is discussed as well.
Various model-independent aspects of the $bar{K} N to K Xi$ reaction are investigated, starting from the determination of the most general structure of the reaction amplitude for $Xi$ baryons with $J^P=frac12^pm$ and $frac32^pm$ and the observables t hat allow a complete determination of these amplitudes. Polarization observables are constructed in terms of spin-density matrix elements. Reflection symmetry about the reaction plane is exploited, in particular, to determine the parity of the produced $Xi$ in a model-independent way. In addition, extending the work of Biagi $mathrm{textit{et al. } [Z. Phys. C textbf{34}, 175 (1987)]}$, a way is presented of determining simultaneously the spin and parity of the ground state of $Xi$ baryon as well as those of the excited $Xi$ states.
175 - Wei-Hong Liang , E. Oset 2020
We study the $bar K p to Y Kbar K pi$ reactions with $bar K = bar K^0, K^-$ and $Y=Sigma^0, Sigma^+, Lambda$, in the region of $Kbar K pi$ invariant masses of $1200-1550$ MeV. The strong coupling of the $f_1(1285)$ resonance to $K^* bar K$ makes the mechanism based on $K^*$ exchange very efficient to produce this resonance observed in the $Kbar K pi$ invariant mass distribution. In addition, in all the reactions one observes an associated peak at $1420$ MeV which comes from the $K^* bar K$ decay mode of the $f_1(1285)$ when the $K^*$ is placed off shell at higher invariant masses. We claim this to be the reason for the peak of the $K^* bar K$ distribution seen in the experiments which has been associated to the $f_1(1420)$ resonance.
We investigate $S=-2$ production from the $Lambda pto K^+X$ reactions within the effective Lagrangian approach. The $Lambda pto K^+LambdaLambda$ and $Lambda pto K^+Xi^-p$ reactions are considered to find the lightest $S=-2$ system, which is $H$-dibar yon. We assume that the $H(2250)toLambdaLambda$, and $H(2270)toXi^-p$ decays with the intrinsic decay width of 1 MeV. According to our calculations, the total cross-sections for $Lambda pto K^+LambdaLambda$ and $Lambda pto K^+Xi^-p$ reactions were found to be of the order of a few $mu$b in the $Lambda$ beam momentum range of up to 5 GeV$/c$. Furthermore, the direct access of information regarding the interference patterns between the $H$-dibaryon and non-resonant contributions was demonstrated.
We investigate $S=-1$ hyperon production from the $Lambda_c^+to K^-ppi^+$ and $Lambda_c^+to K^0_Sppi^0$ decays within the effective Lagrangian approach. We consider the $Sigma/Lambda$ ground states, $Lambda(1520)$, $Lambda(1670)(J^p=1/2^-)$, $Lambda( 1890)(J^p=3/2^+)$; $Lambda/Sigma$-pole contributions from the combined resonances between 1800 MeV and 2100 MeV; and $N/Delta$-pole and $K^ast$-pole contributions, which include the proton, $Delta(1232)$, and $K(892)$. We calculate the Dalitz plot density $(d^2Gamma/dM_{K^-p}dM_{K^-pi^+}$) for the $Lambda_c^+to K^-ppi^+$ decay. The calculated result is in good agreement with experimental data from the Belle Collaboration. Using the parameters from the fit, we present the Dalitz plot density for the $Lambda_c^+to K^0_Sppi^0$ decay. In our calculation, a sharp peak-like structure near 1665 MeV is predicted in the $Lambda_c^+to K^-ppi^+$ decay because of the interference effects between the $Lambda(1670)$ resonance and $eta$-$Lambda$ loop channels. We also demonstrate that we can access direct information regarding the weak couplings of $Lambda(1670)$ and $Sigma(1670)$ from the $Lambda_c^+to K^0_Sppi^0$ decay. Finally, a possible interpretation for the 1665 MeV structure beyond our prediction is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا