ﻻ يوجد ملخص باللغة العربية
We study the $bar K p to Y Kbar K pi$ reactions with $bar K = bar K^0, K^-$ and $Y=Sigma^0, Sigma^+, Lambda$, in the region of $Kbar K pi$ invariant masses of $1200-1550$ MeV. The strong coupling of the $f_1(1285)$ resonance to $K^* bar K$ makes the mechanism based on $K^*$ exchange very efficient to produce this resonance observed in the $Kbar K pi$ invariant mass distribution. In addition, in all the reactions one observes an associated peak at $1420$ MeV which comes from the $K^* bar K$ decay mode of the $f_1(1285)$ when the $K^*$ is placed off shell at higher invariant masses. We claim this to be the reason for the peak of the $K^* bar K$ distribution seen in the experiments which has been associated to the $f_1(1420)$ resonance.
In this talk, we investigate $Xi(1690)^-$ production from the $K^-pto K^+K^-Lambda$ reaction wit the effective Lagrangian method and consider the $s$- and $u$-channel $Sigma/Lambda$ ground states and resonances for the $Xi$-pole contributions, in add
Various model-independent aspects of the $bar{K} N to K Xi$ reaction are investigated, starting from the determination of the most general structure of the reaction amplitude for $Xi$ baryons with $J^P=frac12^pm$ and $frac32^pm$ and the observables t
In the present work, we investigate the hidden-strangeness production process in the $S=+1$ channel via $K^+pto K^+phi,p$, focussing on the exotic textit{pentaquark} molecular $K^*Sigma$ bound state, assigned by $P^+_s(2071,3/2^-)$. For this purpose,
A model for the $bar K d to pi Y N$ reactions with $Y=Lambda, Sigma$ is developed, aiming at establishing the low-lying $Lambda$ and $Sigma$ hyperon resonances through analyzing the forthcoming data from the J-PARC E31 experiment. The off-shell ampli
We report on a theoretical study of the newly observed $Omega(2012)$ resonance in the nonleptonic weak decays of $Omega_c^0 to pi^+ bar{K}Xi^*(1530) (eta Omega) to pi^+ (bar{K}Xi)^-$ and $pi^+ (bar{K}Xipi)^-$ via final-state interactions of the $bar{