ﻻ يوجد ملخص باللغة العربية
We investigate $S=-2$ production from the $Lambda pto K^+X$ reactions within the effective Lagrangian approach. The $Lambda pto K^+LambdaLambda$ and $Lambda pto K^+Xi^-p$ reactions are considered to find the lightest $S=-2$ system, which is $H$-dibaryon. We assume that the $H(2250)toLambdaLambda$, and $H(2270)toXi^-p$ decays with the intrinsic decay width of 1 MeV. According to our calculations, the total cross-sections for $Lambda pto K^+LambdaLambda$ and $Lambda pto K^+Xi^-p$ reactions were found to be of the order of a few $mu$b in the $Lambda$ beam momentum range of up to 5 GeV$/c$. Furthermore, the direct access of information regarding the interference patterns between the $H$-dibaryon and non-resonant contributions was demonstrated.
In this talk, we investigate $Xi(1690)^-$ production from the $K^-pto K^+K^-Lambda$ reaction wit the effective Lagrangian method and consider the $s$- and $u$-channel $Sigma/Lambda$ ground states and resonances for the $Xi$-pole contributions, in add
The reaction $gamma pto K^+Lambda$ has been investigated over the center-of-momentum energy, $W$, range from threshold up to 2.2 GeV in a tree-level effective Lagrangian model that incorporates most of the well-established baryon resonances with spin
The cross sections for the reactions pp -> p Lambda^0K^+ and pn -> n Lambda^0K^+ are calculated near threshold of the final states. The theoretical ratio of the cross sections R = sigma(pn -> n Lambda^0K^+)/ sigma(pp ->pLambda^0K^+) = 3 shows the e
In the present work, we investigate the hidden-strangeness production process in the $S=+1$ channel via $K^+pto K^+phi,p$, focussing on the exotic textit{pentaquark} molecular $K^*Sigma$ bound state, assigned by $P^+_s(2071,3/2^-)$. For this purpose,
The paper gives an overview of strangeness-production experiments at the Cooler Synchrotron COSY. Results on kaon-pair and $phi$ meson production in $pp$, $pd$ and $dd$ collisions, hyperon-production experiments and $Lambda p$ final-state interaction