ﻻ يوجد ملخص باللغة العربية
The antiferromagnetism in $alpha$-Cu$_3$Mg(OH)$_6$Br$_2$ was studied by magnetic-susceptibility, specific-heat and neutron-diffraction measurements. The crystal structure consists of Cu$^{2+}$ kagome layers with Mg$^{2+}$ ions occupying the centers of the hexagons, separated by Br$^{1-}$ ions. The magnetic system orders antiferromagnetically at 5.4 K with the magnetic moments aligned ferromagnetically within the kagome planes. The ordered moment is 0.94 $mu_B$, suggesting little quantum and geometrical fluctuations. By comparing the magnetic and specific-heat properties with those of the haydeeite, we suggest that $alpha$-Cu$_3$Mg(OH)$_6$Br$_2$ may be described by the two-dimensional spin-$1/2$ Heisenberg kagome model and is in the region of the ferromagnetic-order side of the phase diagram.
We studied the magnetic properties of YCu$_3$(OH)$_6$Br$_2$[Br$_{1-x}$(OH)$_{x}$] ($x$ = 0.33 and 0.45), where Cu$^{2+}$ ions form two-dimensional kagome layers. There is no magnetic order down to 50 mK while the Curie-Weiss temperature is in the ord
Barlowite Cu$_4$(OH)$_6$FBr shows three-dimensional (3D) long-range antiferromagnetism, which is fully suppressed in Cu$_3$Zn(OH)$_6$FBr with a kagome quantum spin liquid ground state. Here we report systematic studies on the evolution of magnetism i
Spin liquids are exotic phases of quantum matter challenging Landaus paradigm of symmetry-breaking phase transitions. Despite strong exchange interactions, spins do not order or freeze down to zero temperature. While well-established for 1D quantum a
We present the crystal structure and magnetic properties of Y$_{3}$Cu$_{9}$(OH)$_{19}$Cl$_{8}$, a stoichiometric frustrated quantum spin system with slightly distorted kagome layers. Single crystals of Y$_{3}$Cu$_{9}$(OH)$_{19}$Cl$_{8}$ were grown un
We report a new kagome quantum spin liquid candidate Cu$_3$Zn(OH)$_6$FBr, which does not experience any phase transition down to 50 mK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature ($sim$ 200 K). A clear gap opening