ﻻ يوجد ملخص باللغة العربية
We studied the magnetic properties of YCu$_3$(OH)$_6$Br$_2$[Br$_{1-x}$(OH)$_{x}$] ($x$ = 0.33 and 0.45), where Cu$^{2+}$ ions form two-dimensional kagome layers. There is no magnetic order down to 50 mK while the Curie-Weiss temperature is in the order of -100 K. At zero magnetic field, the low-temperature specific heat shows a $T^2$ dependence. Above 2 T, a linear-temperature dependence term in specific heat emerges, and the value of $gamma = C/T$ increases linearly with the field. Furthermore, the magnetic susceptibility tends to a constant value at $T = 0$. Our results suggest that the magnetic ground state of YCu$_3$(OH)$_6$Br$_2$[Br$_{1-x}$(OH)$_{x}$] is consistent with a Dirac quantum-spin-liquid state with linearly dispersing spinon strongly coupled with emergent gauge field, which has long been theoretically proposed as a candidate ground state in the two-dimensional kagome Heisenberg antiferromagnetic system.
The antiferromagnetism in $alpha$-Cu$_3$Mg(OH)$_6$Br$_2$ was studied by magnetic-susceptibility, specific-heat and neutron-diffraction measurements. The crystal structure consists of Cu$^{2+}$ kagome layers with Mg$^{2+}$ ions occupying the centers o
The magnetic ground state of the ideal quantum kagome antiferromagnet (QKA) has been a long-standing puzzle, mainly because perturbations to the nearest-neighbor isotropic Heisenberg Hamiltonian can lead to various fundamentally different ground stat
Spin liquids are exotic phases of quantum matter challenging Landaus paradigm of symmetry-breaking phase transitions. Despite strong exchange interactions, spins do not order or freeze down to zero temperature. While well-established for 1D quantum a
We report a new kagome quantum spin liquid candidate Cu$_3$Zn(OH)$_6$FBr, which does not experience any phase transition down to 50 mK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature ($sim$ 200 K). A clear gap opening
We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence