ﻻ يوجد ملخص باللغة العربية
Given data drawn from an unknown distribution, $D$, to what extent is it possible to ``amplify this dataset and output an even larger set of samples that appear to have been drawn from $D$? We formalize this question as follows: an $(n,m)$ $text{amplification procedure}$ takes as input $n$ independent draws from an unknown distribution $D$, and outputs a set of $m > n$ ``samples. An amplification procedure is valid if no algorithm can distinguish the set of $m$ samples produced by the amplifier from a set of $m$ independent draws from $D$, with probability greater than $2/3$. Perhaps surprisingly, in many settings, a valid amplification procedure exists, even when the size of the input dataset, $n$, is significantly less than what would be necessary to learn $D$ to non-trivial accuracy. Specifically we consider two fundamental settings: the case where $D$ is an arbitrary discrete distribution supported on $le k$ elements, and the case where $D$ is a $d$-dimensional Gaussian with unknown mean, and fixed covariance. In the first case, we show that an $left(n, n + Theta(frac{n}{sqrt{k}})right)$ amplifier exists. In particular, given $n=O(sqrt{k})$ samples from $D$, one can output a set of $m=n+1$ datapoints, whose total variation distance from the distribution of $m$ i.i.d. draws from $D$ is a small constant, despite the fact that one would need quadratically more data, $n=Theta(k)$, to learn $D$ up to small constant total variation distance. In the Gaussian case, we show that an $left(n,n+Theta(frac{n}{sqrt{d}} )right)$ amplifier exists, even though learning the distribution to small constant total variation distance requires $Theta(d)$ samples. In both the discrete and Gaussian settings, we show that these results are tight, to constant factors. Beyond these results, we formalize a number of curious directions for future research along this vein.
Agents trained by reinforcement learning (RL) often fail to generalize beyond the environment they were trained in, even when presented with new scenarios that seem similar to the training environment. We study the query complexity required to train
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation. When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware me
Adversarial attacks during the testing phase of neural networks pose a challenge for the deployment of neural networks in security critical settings. These attacks can be performed by adding noise that is imperceptible to humans on top of the origina
Suppose we have randomized decision trees for an outer function $f$ and an inner function $g$. The natural approach for obtaining a randomized decision tree for the composed function $(fcirc g^n)(x^1,ldots,x^n)=f(g(x^1),ldots,g(x^n))$ involves amplif
Numerous recent works show that overparameterization implicitly reduces variance for min-norm interpolators and max-margin classifiers. These findings suggest that ridge regularization has vanishing benefits in high dimensions. We challenge this narr