ﻻ يوجد ملخص باللغة العربية
Suppose we have randomized decision trees for an outer function $f$ and an inner function $g$. The natural approach for obtaining a randomized decision tree for the composed function $(fcirc g^n)(x^1,ldots,x^n)=f(g(x^1),ldots,g(x^n))$ involves amplifying the success probability of the decision tree for $g$, so that a union bound can be used to bound the error probability over all the coordinates. The amplification introduces a logarithmic factor cost overhead. We study the question: When is this log factor necessary? We show that when the outer function is parity or majority, the log factor can be necessary, even for models that are more powerful than plain randomized decision trees. Our results are related to, but qualitatively strengthen in various ways, known results about decision trees with noisy inputs.
Let the randomized query complexity of a relation for error probability $epsilon$ be denoted by $R_epsilon(cdot)$. We prove that for any relation $f subseteq {0,1}^n times mathcal{R}$ and Boolean function $g:{0,1}^m rightarrow {0,1}$, $R_{1/3}(fcirc
Let $R_epsilon(cdot)$ stand for the bounded-error randomized query complexity with error $epsilon > 0$. For any relation $f subseteq {0,1}^n times S$ and partial Boolean function $g subseteq {0,1}^m times {0,1}$, we show that $R_{1/3}(f circ g^n) in
We prove two new results about the randomized query complexity of composed functions. First, we show that the randomized composition conjecture is false: there are families of partial Boolean functions $f$ and $g$ such that $R(fcirc g)ll R(f) R(g)$.
Let $f:{0,1}^n rightarrow {0,1}$ be a Boolean function. The certificate complexity $C(f)$ is a complexity measure that is quadratically tight for the zero-error randomized query complexity $R_0(f)$: $C(f) leq R_0(f) leq C(f)^2$. In this paper we stud
Let $fsubseteq{0,1}^ntimesXi$ be a relation and $g:{0,1}^mto{0,1,*}$ be a promise function. This work investigates the randomised query complexity of the relation $fcirc g^nsubseteq{0,1}^{mcdot n}timesXi$, which can be viewed as one of the most gener