ﻻ يوجد ملخص باللغة العربية
We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to $n$ receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experienced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest $k_1$ and $k_2$ transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of $n$. In particular, the source node transmits each type I update packet to the earliest $k_1$ and each type II update packet to the earliest $k_2$ of $n$ receiver nodes. We determine the optimum $k_1$ and $k_2$ stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages.
We consider the age of information in a multihop multicast network where there is a single source node sending time-sensitive updates to $n^L$ end nodes, and $L$ denotes the number of hops. In the first hop, the source node sends updates to $n$ first
Given $n$ randomly located source-destination (S-D) pairs on a fixed area network that want to communicate with each other, we study the age of information with a particular focus on its scaling as the network size $n$ grows. We propose a three-phase
We consider a communication system in which status updates arrive at a source node, and should be transmitted through a network to the intended destination node. The status updates are samples of a random process under observation, transmitted as pac
We consider a network consisting of a single source and $n$ receiver nodes that are grouped into $m$ equal size communities, i.e., clusters, where each cluster includes $k$ nodes and is served by a dedicated cluster head. The source node kee
We study age of information in a status updating system that consists of a single sampler, i.e., source node, that sends time-sensitive status updates to a single monitor node through a server node. We first consider a Gilbert-Elliot service profile