ترغب بنشر مسار تعليمي؟ اضغط هنا

Age of Gossip in Networks with Community Structure

127   0   0.0 ( 0 )
 نشر من قبل Baturalp Buyukates
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a network consisting of a single source and $n$ receiver nodes that are grouped into $m$ equal size communities, i.e., clusters, where each cluster includes $k$ nodes and is served by a dedicated cluster head. The source node kee



قيم البحث

اقرأ أيضاً

187 - Roy D. Yates 2021
A source node updates its status as a point process and also forwards its updates to a network of observer nodes. Within the network of observers, these updates are forwarded as point processes from node to node. Each node wishes its knowledge of the source to be as timely as possible. In this network, timeliness is measured by a discrete form of age of information: each status change at the source is referred to as a version and the age at a node is how ma
We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to $n$ receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experien ced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest $k_1$ and $k_2$ transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of $n$. In particular, the source node transmits each type I update packet to the earliest $k_1$ and each type II update packet to the earliest $k_2$ of $n$ receiver nodes. We determine the optimum $k_1$ and $k_2$ stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages.
Given $n$ randomly located source-destination (S-D) pairs on a fixed area network that want to communicate with each other, we study the age of information with a particular focus on its scaling as the network size $n$ grows. We propose a three-phase transmission scheme that utilizes textit{hierarchical cooperation} between users along with textit{mega update packets} and show that an average age scaling of $O(n^{alpha(h)}log n)$ per-user is achievable where $h$ denotes the number of hierarchy levels and $alpha(h) = frac{1}{3cdot2^h+1}$ which tends to $0$ as $h$ increases such that asymptotically average age scaling of the proposed scheme is $O(log n)$. To the best of our knowledge, this is the best average age scaling result in a status update system with multiple S-D pairs.
We consider the age of information in a multihop multicast network where there is a single source node sending time-sensitive updates to $n^L$ end nodes, and $L$ denotes the number of hops. In the first hop, the source node sends updates to $n$ first -hop receiver nodes, and in the second hop each first-hop receiver node relays the update packets that it has received to $n$ further users that are connected to it. This network architecture continues in further hops such that each receiver node in hop $ell$ is connected to $n$ further receiver nodes in hop $ell+1$. We study the age of information experienced by the end nodes, and in particular, its scaling as a function of $n$. We show that, using an earliest $k$ transmission scheme in each hop, the age of information at the end nodes can be made a constant independent of $n$. In particular, the source node transmits each update packet to the earliest $k_1$ of the $n$ first-hop nodes, and each first-hop node that receives the update relays it to the earliest $k_2$ out of $n$ second-hop nodes that are connected to it and so on. We determine the optimum $k_ell$ stopping value for each hop $ell$ for arbitrary shifted exponential link delays.
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repea tedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $epsilon$ using $O(frac{n^{1.5}}{sqrt{log n}} log epsilon^{-1})$ radio transmissions, which yields a $sqrt{frac{n}{log n}}$ factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا