ﻻ يوجد ملخص باللغة العربية
This paper proposes a new model, called condition-transforming variational autoencoder (CTVAE), to improve the performance of conversation response generation using conditional variational autoencoders (CVAEs). In conventional CVAEs , the prior distribution of latent variable z follows a multivariate Gaussian distribution with mean and variance modulated by the input conditions. Previous work found that this distribution tends to become condition independent in practical application. In our proposed CTVAE model, the latent variable z is sampled by performing a non-lineartransformation on the combination of the input conditions and the samples from a condition-independent prior distribution N (0; I). In our objective evaluations, the CTVAE model outperforms the CVAE model on fluency metrics and surpasses a sequence-to-sequence (Seq2Seq) model on diversity metrics. In subjective preference tests, our proposed CTVAE model performs significantly better than CVAE and Seq2Seq models on generating fluency, informative and topic relevant responses.
This paper presents an emotion-regularized conditional variational autoencoder (Emo-CVAE) model for generating emotional conversation responses. In conventional CVAE-based emotional response generation, emotion labels are simply used as additional co
We investigate large-scale latent variable models (LVMs) for neural story generation -- an under-explored application for open-domain long text -- with objectives in two threads: generation effectiveness and controllability. LVMs, especially the vari
We introduce an improved variational autoencoder (VAE) for text modeling with topic information explicitly modeled as a Dirichlet latent variable. By providing the proposed model topic awareness, it is more superior at reconstructing input texts. Fur
We present our work on Track 2 in the Dialog System Technology Challenges 7 (DSTC7). The DSTC7-Track 2 aims to evaluate the response generation of fully data-driven conversation models in knowledge-grounded settings, which provides the contextual-rel
Despite the great promise of Transformers in many sequence modeling tasks (e.g., machine translation), their deterministic nature hinders them from generalizing to high entropy tasks such as dialogue response generation. Previous work proposes to cap