ﻻ يوجد ملخص باللغة العربية
We present our work on Track 2 in the Dialog System Technology Challenges 7 (DSTC7). The DSTC7-Track 2 aims to evaluate the response generation of fully data-driven conversation models in knowledge-grounded settings, which provides the contextual-relevant factual texts. The Sequenceto-Sequence models have been widely used for end-to-end generative conversation modelling and achieved impressive results. However, they tend to output dull and repeated responses in previous studies. Our work aims to promote the diversity for end-to-end conversation response generation, which follows a two-stage pipeline: 1) Generate multiple responses. At this stage, two different models are proposed, i.e., a variational generative (VariGen) model and a retrieval based (Retrieval) model. 2) Rank and return the most related response by training a topic coherence discrimination (TCD) model for the ranking process. According to the official evaluation results, our proposed Retrieval and VariGen systems ranked first and second respectively on objective diversity metrics, i.e., Entropy, among all participant systems. And the VariGen system ranked second on NIST and METEOR metrics.
In knowledge grounded conversation, domain knowledge plays an important role in a special domain such as Music. The response of knowledge grounded conversation might contain multiple answer entities or no entity at all. Although existing generative q
This paper presents an end-to-end response selection model for Track 1 of the 7th Dialogue System Technology Challenges (DSTC7). This task focuses on selecting the correct next utterance from a set of candidates given a partial conversation. We propo
We first propose a new task named Dialogue Description (Dial2Desc). Unlike other existing dialogue summarization tasks such as meeting summarization, we do not maintain the natural flow of a conversation but describe an object or an action of what pe
Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event. Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks.
In this work, we propose a new solution for parallel wave generation by WaveNet. In contrast to parallel WaveNet (van den Oord et al., 2018), we distill a Gaussian inverse autoregressive flow from the autoregressive WaveNet by minimizing a regularize