ﻻ يوجد ملخص باللغة العربية
As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be produced by plasmonic metamaterials, which, however, has not been realized in on-chip plasmonic waveguide structures. Here, we introduce broadband PIT based on a plasmonic metal-insulator-metal (MIM) waveguide system. Utilizing the direct coupling structure, PIT emerges based on an easy-fabricated structure without gap. By tuning coupling distance, the transparent window can be continuously tuned from narrow- to broadband. Such device is promising for on-chip applications on sensing, filtering and slow light over a broad frequency range.
We introduce phase-change material Ge2Sb2Te5 (GST) into metal-insulator-metal (MIM) waveguide systems to realize chipscale plasmonic modulators and switches in the telecommunication band. Benefitting from the high contrast of optical properties betwe
By combining analytical and numerical approaches, we theoretically investigate the effect of fabrication imperfections, e.g. roughness at metal interfaces, on nanometer metal-insulator-metal waveguides supporting slow gap-plasmon modes. Realistic dev
A hybrid metal-graphene metamaterial (MM) is reported to achieve the active control of the broadband plasmon-induced transparency (PIT) in THz region. The unit cell consists of one cut wire (CW), four U-shape resonators (USRs) and monolayer graphene
Recently, metalenses which consist of metasurface arrays, have attracted attention due to their more condensed size in comparison with conventional lenses. In this paper, we propose a reconfigurable coding metasurface hybridized with vanadium dioxide
Metasurfaces incorporating graphene hold great promise for dynamic manipulation of terahertz waves. However, it remains challenging to design a broadband graphene-based terahertz metasurface with switchable functionality of half-wave plate (HWP) and