ترغب بنشر مسار تعليمي؟ اضغط هنا

Active control of broadband plasmon-induced transparency in terahertz hybrid metal-graphene metamaterial

154   0   0.0 ( 0 )
 نشر من قبل Zhaojian Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hybrid metal-graphene metamaterial (MM) is reported to achieve the active control of the broadband plasmon-induced transparency (PIT) in THz region. The unit cell consists of one cut wire (CW), four U-shape resonators (USRs) and monolayer graphene sheets under the USRs. Via near-field coupling, broadband PIT can be produced through the interference between different modes. Based on different arrangements of graphene positions, not only can we achieve electrically switching the amplitude of broadband PIT, but also can realize modulating the bandwidth of the transparent window. Simultaneously, both the capability and region of slow light can be dynamically tunable. This work provides schemes to manipulate PIT with more degrees of freedom, which will find significant applications in multifunctional THz modulation.



قيم البحث

اقرأ أيضاً

179 - Tingting Liu 2018
The metamaterial analogue of electromagnetically induced transparency (EIT) in terahertz (THz) regime holds fascinating prospects for filling the THz gap in various functional devices. In this paper, we propose a novel hybrid metamaterial to actively manipulate the resonance strength of EIT effect. By integrating a monolayer graphene into a THz metal metamaterial, an on-to-off modulation of the EIT transparency window is achieved under different Fermi levels of graphene. According to the classical two-particle model and the distributions of the electric field and surface charge density, the physical mechanism is attributable to the recombination effect of conductive graphene. This work reveals a novel manipulation mechanism of EIT resonance in the hybrid metamaterial and offers a new perspective towards designing THz functional devices.
Plasmon induced transparency (PIT) effect in a terahertz graphene metamaterial is numerically and theoretically analyzed. The proposed metamaterial comprises of a pair of graphene split ring resonators placed alternately on both sides of a graphene s trip of nanometer scale. The PIT effect in the graphene metamaterial is studied for different vertical and horizontal configurations. Our results reveal that there is no PIT effect in the graphene metamaterial when the centers of both the split ring resonators and the graphene strip are collinear to each other. This is a noteworthy feature, as the PIT effect does not vanish for similar configuration in a metal-based metamaterial structure. We have further shown that the PIT effect can be tuned by varying the Fermi energy of graphene layer. A theoretical model using the three level plasmonic system is established in order to validate the numerical results. Our studies could be significant in designing graphene based frequency agile ultra-thin devices for terahertz applications.
As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be pro duced by plasmonic metamaterials, which, however, has not been realized in on-chip plasmonic waveguide structures. Here, we introduce broadband PIT based on a plasmonic metal-insulator-metal (MIM) waveguide system. Utilizing the direct coupling structure, PIT emerges based on an easy-fabricated structure without gap. By tuning coupling distance, the transparent window can be continuously tuned from narrow- to broadband. Such device is promising for on-chip applications on sensing, filtering and slow light over a broad frequency range.
73 - Tingting Liu 2017
A novel mechanism to realize dynamically tunable electromagnetically induced transparency (EIT) analogue in the terahertz (THz) regime is proposed. By putting the electrically controllable monolayer graphene under the dark resonator, the amplitude of the EIT resonance in the metal-based metamaterial can be modulated substantially via altering the Fermi level of graphene. The amplitude modulation can be attributed to the change in the damping rate of the dark mode caused by the recombination effect of the conductive graphene. This work provides an alternative way to achieve tunable slow light effect and has potential applications in THz wireless communications.
Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device optical responses, such as electromagnetic induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity, by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3 % and 97.61 % are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs and a significant enhancement of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale quantum communication and quantum processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا