ﻻ يوجد ملخص باللغة العربية
Recently, metalenses which consist of metasurface arrays, have attracted attention due to their more condensed size in comparison with conventional lenses. In this paper, we propose a reconfigurable coding metasurface hybridized with vanadium dioxide (VO2) for wavefront manipulation at terahertz (THz) frequencies. At room temperature, the unit-cell can reflect as a 1 bit under linearly y polarized illuminated waves. Besides, when the temperature is increased, VO2 would be in a fully metallic state; therefore, unit-cell can act as a 0 reflection phase. Furthermore, by changing the unit-cells arrangements on a metalens surface, the proposed device can focus the incident beam at any position according to a particular design. Numerical simulations demonstrate that the designed VO2-assisted metasurface can generate one and multi-focal spot in reflection mode as expected. Also, theoretical results depict an excellent agreement with obtained simulation results. The presented metalens has notable potential in THz high-resolution imaging and optical coding.
Multifocal lens, which focus incident light at multiple foci, are widely used in imaging systems and optical communications. However, for the traditional design strategy, it combines several lenses that have different focal points into a planar integ
Dynamically switchable half-/quarter-wave plates have recently been the focus in the terahertz regime. Conventional design philosophy leads to multilayer metamaterials or narrowband metasurfaces. Here we propose a novel design philosophy and a VO2-me
As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be pro
Erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whisper galley single mode laser (WGSML) by making use of a pair of coupled
Modern scattering-type scanning near-field optical microscopy (s-SNOM) has become an indispensable tool in material research. However, as the s-SNOM technique marches into the far-infrared (IR) and terahertz (THz) regimes, emerging experiments someti