ﻻ يوجد ملخص باللغة العربية
In previous works, we have proposed a new formulation of Yang-Mills theory on the lattice so that the so-called restricted field obtained from the gauge-covariant decomposition plays the dominant role in quark confinement. This framework improves the Abelian projection in the gauge-independent manner. For quarks in the fundamental representation, we have demonstrated some numerical evidences for the restricted field dominance in the string tension, which means that the string tension extracted from the restricted part of the Wilson loop reproduces the string tension extracted from the original Wilson loop. However, it is known that the restricted field dominance is not observed for the Wilson loop in higher representations if the restricted part of the Wilson loop is extracted by adopting the Abelian projection or the field decomposition naively in the same way as in the fundamental representation. In this paper, therefore, we focus on confinement of quarks in higher representations. By virtue of the non-Abelian Stokes theorem for the Wilson loop operator, we propose suitable gauge-invariant operators constructed from the restricted field to reproduce the correct behavior of the original Wilson loop averages for higher representations. Moreover, we perform lattice simulations to measure the static potential for quarks in higher representations using the proposed operators. We find that the proposed operators well reproduce the behavior of the original Wilson loop average, namely, the linear part of the static potential with the correct value of the string tension, which overcomes the problem that occurs in naively applying Abelian-projection to the Wilson loop operator for higher representations.
The Abelian dominance for the string tension was shown for the fundamental sources in MA gauge in the lattice simulations. For higher representations, however, it is also known that the naive Abelian Wilson loop, which is defined by using the diagona
The axial anomaly arising from the fermion sector of $U(N)$ or $SU(N)$ reduced model is studied under a certain restriction of gauge field configurations (the ``$U(1)$ embedding with $N=L^d$). We use the overlap-Dirac operator and consider how the an
We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field t
The spectral flow of the overlap operator is computed numerically along a particular path in gauge field space. The path connects two gauge equivalent configurations which differ by a gauge transformation in the non-trivial class of pi_4(SU(2)). The
Equations of motion for the light-like QCD Wilson loops are studied in the generalized loop space (GLS) setting. To this end, the classically conformal-invariant non-local variations of the cusped Wilson exponentials lying (partially) on the light-co