ﻻ يوجد ملخص باللغة العربية
We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.
We show that, under certain general assumptions, any sensible lattice Dirac operator satisfies a generalized form of the Ginsparg-Wilson relation (GWR). Those assumptions, on the other hand, are mostly dictated by large momentum behaviour considerati
In this paper, we introduce the overlap Dirac operator, which satisfies the Ginsparg-Wilson relation, to the matter sector of two-dimensional N=(2,2) lattice supersymmetric QCD (SQCD) with preserving one of the supercharges. It realizes the exact chi
The improvement of fermionic operators for Ginsparg-Wilson fermions is investigated. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
We discuss the improvement of bilinear fermionic operators for Ginsparg-Wilson fermions. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
In previous works, we have proposed a new formulation of Yang-Mills theory on the lattice so that the so-called restricted field obtained from the gauge-covariant decomposition plays the dominant role in quark confinement. This framework improves the