ﻻ يوجد ملخص باللغة العربية
The gamma model is a generalized linear model for gamma-distributed outcomes. The model is widely applied in psychology, ecology or medicine. In this paper we focus on gamma models having a linear predictor without intercept. For a specific scenario sets of locally D- and A-optimal designs are to be developed. Recently, Gaffke et al. (2018) established a complete class and an essentially complete class of designs for gamma models to obtain locally D-optimal designs. However to extend this approach to gamma model without an intercept term is complicated. To solve that further techniques have to be developed in the current work. Further, by a suitable transformation between gamma models with and without intercept optimality results may be transferred from one model to the other. Additionally by means of The General Equivalence Theorem optimality can be characterized for multiple regression by a system of polynomial inequalities which can be solved analytically or by computer algebra. By this necessary and sufficient conditions on the parameter values can be obtained for the local D-optimality of particular designs. The robustness of the derived designs with respect to misspecifications of the initial parameter values is examined by means of their local D-efficiencies.
We give an overview over the usefulness of the concept of equivariance and invariance in the design of experiments for generalized linear models. In contrast to linear models here pairs of transformations have to be considered which act simultaneousl
We consider the problem of designing experiments for the comparison of two regression curves describing the relation between a predictor and a response in two groups, where the data between and within the group may be dependent. In order to derive ef
We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of sampl
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of ad
We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the poste