ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Bayesian Estimation for Random Dot Product Graphs

81   0   0.0 ( 0 )
 نشر من قبل Fangzheng Xie
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the posterior spectral embedding is a fully-likelihood based graph estimation method taking advantage of the Bernoulli likelihood information of the observed adjacency matrix. We develop a minimax-lower bound for estimating the latent positions, and show that the posterior spectral embedding achieves this lower bound since it both results in a minimax-optimal posterior contraction rate, and yields a point estimator achieving the minimax risk asymptotically. The convergence results are subsequently applied to clustering in stochastic block models, the result of which strengthens an existing result concerning the number of mis-clustered vertices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogy of the adjacency spectral embedding, but the resulting posterior contraction rate is sub-optimal with an extra logarithmic factor. The practical performance of the proposed methodology is illustrated through extensive synthetic examples and the analysis of a Wikipedia graph data.



قيم البحث

اقرأ أيضاً

62 - Fangzheng Xie , Yanxun Xu 2019
We propose a one-step procedure to estimate the latent positions in random dot product graphs efficiently. Unlike the classical spectral-based methods such as the adjacency and Laplacian spectral embedding, the proposed one-step procedure takes advan tage of both the low-rank structure of the expected adjacency matrix and the Bernoulli likelihood information of the sampling model simultaneously. We show that for each vertex, the corresponding row of the one-step estimator converges to a multivariate normal distribution after proper scaling and centering up to an orthogonal transformation, with an efficient covariance matrix. The initial estimator for the one-step procedure needs to satisfy the so-called approximate linearization property. The one-step estimator improves the commonly-adopted spectral embedding methods in the following sense: Globally for all vertices, it yields an asymptotic sum of squares error no greater than those of the spectral methods, and locally for each vertex, the asymptotic covariance matrix of the corresponding row of the one-step estimator dominates those of the spectral embeddings in spectra. The usefulness of the proposed one-step procedure is demonstrated via numerical examples and the analysis of a real-world Wikipedia graph dataset.
We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of sampl es per parameter proposal. The optimal proposal density represents the optimal trade-off between favoring high acceptance rate and reducing the variance of the importance weights of accepted samples. We discuss two convenient approximations of this proposal and show that the optimal proposal density gives a significant boost in the expected sampling efficiency compared to standard kernels that are in common use in the ABC literature, especially as the number of parameters increases.
We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on i ts values. This leads to a straightforward procedure for posterior inference via an MCMC procedure. We give theoretical performance guarantees (contraction rates for the posterior) for the Bayesian estimate in terms of the regularity of the unknown volatility function. We illustrate the method on synthetic and real data examples.
We consider high-dimensional measurement errors with high-frequency data. Our focus is on recovering the covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time an d the measurement errors are latent variables, leading to major challenges besides high data dimensionality. We propose a new covariance matrix estimator in this context with appropriate localization and thresholding. By developing a new technical device integrating the high-frequency data feature with the conventional notion of $alpha$-mixing, our analysis successfully accommodates the challenging serial dependence in the measurement errors. Our theoretical analysis establishes the minimax optimal convergence rates associated with two commonly used loss functions. We then establish cases when the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. Considering that the variances and covariances can be small in reality, we conduct a second-order theoretical analysis that further disentangles the dominating bias in the estimator. A bias-corrected estimator is then proposed to ensure its practical finite sample performance. We illustrate the promising empirical performance of the proposed estimator with extensive simulation studies and a real data analysis.
We consider nonparametric inference of finite dimensional, potentially non-pathwise differentiable target parameters. In a nonparametric model, some examples of such parameters that are always non pathwise differentiable target parameters include pro bability density functions at a point, or regression functions at a point. In causal inference, under appropriate causal assumptions, mean counterfactual outcomes can be pathwise differentiable or not, depending on the degree at which the positivity assumption holds. In this paper, given a potentially non-pathwise differentiable target parameter, we introduce a family of approximating parameters, that are pathwise differentiable. This family is indexed by a scalar. In kernel regression or density estimation for instance, a natural choice for such a family is obtained by kernel smoothing and is indexed by the smoothing level. For the counterfactual mean outcome, a possible approximating family is obtained through truncation of the propensity score, and the truncation level then plays the role of the index. We propose a method to data-adaptively select the index in the family, so as to optimize mean squared error. We prove an asymptotic normality result, which allows us to derive confidence intervals. Under some conditions, our estimator achieves an optimal mean squared error convergence rate. Confidence intervals are data-adaptive and have almost optimal width. A simulation study demonstrates the practical performance of our estimators for the inference of a causal dose-response curve at a given treatment dose.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا